Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr;63(4):1410-21.
doi: 10.2337/db13-0941. Epub 2013 Dec 2.

Glycogen synthase kinase-3β inhibition augments diabetic endothelial progenitor cell abundance and functionality via cathepsin B: a novel therapeutic opportunity for arterial repair

Affiliations

Glycogen synthase kinase-3β inhibition augments diabetic endothelial progenitor cell abundance and functionality via cathepsin B: a novel therapeutic opportunity for arterial repair

Benjamin Hibbert et al. Diabetes. 2014 Apr.

Abstract

Progenitor cell therapy is hindered in patients with diabetes mellitus (DM) due to cellular senescence. Glycogen synthase kinase-3β (GSK3β) activity is increased in DM, potentially exacerbating impaired cell-based therapies. Thus, we aimed to determine if and how GSK3β inhibitors (GSKi) can improve therapeutic efficacy of endothelial progenitor cells (EPC) from patients with DM. Patients with DM had fewer EPCs and increased rates of apoptosis. DM EPCs also exhibited higher levels of GSK3β activity resulting in increased levels of phosphorylated β-catenin. Proteomic profiling of DM EPCs treated with GSKi identified 37 nonredundant, differentially regulated proteins. Cathepsin B (cathB) was subsequently confirmed to be differentially regulated and showed 40% less baseline activity in DM EPCs, an effect reversed by GSKi treatment. Finally, in vivo efficacy of cell-based therapy was assessed in a xenotransplant femoral wire injury mouse model. Administration of DM EPCs reduced the intima-to-media ratio, an effect that was further augmented when DM EPCs were pretreated with GSKi yet absent when cathB was antagonized. In DM, increased basal GSK3β activity contributes to accelerated EPC cellular senescence, an effect reversed by small molecule antagonism of GSK3β, which enhanced cell-based therapy after vascular injury.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources