Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb;12(2):126-37.
doi: 10.1111/jth.12472.

Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation

Affiliations
Free article
Review

Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation

V Capra et al. J Thromb Haemost. 2014 Feb.
Free article

Abstract

The activation of thromboxane prostanoid (TP) receptor on platelets, monocytes/macrophages, endothelial cells, and vascular smooth muscle cells (SMC) plays important roles in regulating platelet activation and vascular tone and in the pathogenesis of thrombosis and vascular inflammation. Oxidative stress and vascular inflammation increase the formation of TP receptor agonists, which promote initiation and progression of atherogenesis and thrombosis. Furthermore, TP receptor activation promotes angiogenesis and vessel wall constriction. Besides thromboxane A₂ and its endoperoxide precursors, prostaglandin G₂ and H₂, isoprostanes, and 20-hydroxyeicosatetraenoic acid also activate TP receptor as autocrine or paracrine ligands. These additional TP activators play a role in pathological conditions such as diabetes, obesity, and hypertension, and their biosynthesis is not inhibited by aspirin, at variance with that of thromboxane A₂. The understanding of TP receptor function increased our current knowledge of the pathogenesis of atherosclerosis and thrombosis, highlighting the great impact that this receptor has in cardiovascular disorders.

Keywords: cardiovascular diseases; inflammation; isoprostanes; platelets; thromboxane receptors.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources