Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Nov 15;261(32):15166-71.

Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium

  • PMID: 2429966
Free article

Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium

D E Wingrove et al. J Biol Chem. .
Free article

Abstract

Sodium-dependent calcium efflux from rat liver mitochondria has been studied as a function of mitochondrial calcium loads (2 to 40 nmol/mg) and extramitochondrial sodium concentrations (5 to 40 mM). The resulting data can be fit to a terreactant model which exhibits simultaneous kinetics (i.e. both sodium and calcium must be bound simultaneously for transport to occur). The Hill coefficients for the calcium and sodium dependences were 1.0 +/- 0.1 and 2.0 +/- 0.2, respectively. The cooperativity of the sodium dependence allows the terreactant model to be reduced to a bireactant model in which the sodium concentration only appears mathematically as the square of the sodium concentration. The data then fit the relationship (Formula: see text) The experimentally determined value of Vmax is found to be 2.6 +/- 0.5 nmol/mg/min, and the load of calcium (KCa) and concentration of sodium (KNa) necessary to stimulate the efflux to half its maximal calcium-dependent activity and sodium-dependent activity, respectively, were 8.1 +/- 1.4 nmol of Ca2+/mg and 9.4 +/- 0.6 mM Na+. This sodium-dependent calcium efflux from liver mitochondria was inhibited by magnesium, by ruthenium red, and by tetraphenylphosphonium. Fifty percent inhibition was obtained at 1.0-1.5 mM magnesium, at 12 nmol of ruthenium red/mg of protein, and at 0.2 microM tetraphenylphosphonium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources