Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb;41(2):166-71.
doi: 10.1097/SHK.0000000000000072.

The synthetic pentasaccharide fondaparinux attenuates myocardial ischemia-reperfusion injury in rats via STAT-3

Affiliations
Free article

The synthetic pentasaccharide fondaparinux attenuates myocardial ischemia-reperfusion injury in rats via STAT-3

Laurent Macchi et al. Shock. 2014 Feb.
Free article

Abstract

Acute myocardial infarction is a leading cause of mortality and morbidity worldwide. Although essential for successful recovery, myocardium reperfusion is associated with reperfusion injury. Two major cell survival signaling cascades are known to be protective against ischemia-reperfusion (I/R) injury: the reperfusion injury salvage kinase, including Akt, extracellular signal-regulated kinase 1/2, and the downstream target GSK-3β, and the survivor activating factor enhancement, which involves STAT-3. Pharmacologic inhibition of factor Xa has been shown to attenuate I/R injury, but the cellular mechanism is poorly understood. Our aim was to determine the role of whole blood in fondaparinux (FDX)-induced cardioprotection and the involvement of reperfusion injury salvage kinase and survivor activating factor enhancement pathways. We investigated FDX ability to prevent in vivo I/R injury using a transient coronary ligation rat model and ex vivo using a model of crystalloid-perfused isolated rat heart. In both models, infarct size was assessed after 120 min of reperfusion. Myocardial tissues were collected after 15 and 30 min of reperfusion for Western blot analysis. In vivo, FDX decreased infarct size by 29% and induced significant STAT-3 and GSK-3β phosphorylation in comparison to controls. Adding AG490, an inhibitor of JAK/STAT pathway, before I/R, prevented STAT-3 phosphorylation and abolished FDX-induced cardioprotection. On the contrary, FDX did not have an effect on infarct size or hemodynamic parameters in the isolated-heart model. Fondaparinux decreased I/R injury in vivo, but not in a crystalloid-perfused isolated heart. Under our experimental conditions, FDX required whole blood to be protective, and this beneficial effect was mediated through STAT-3 phosphorylation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources