Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios
- PMID: 24301181
- DOI: 10.1088/0031-9155/58/24/8769
Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios
Abstract
Intra-operative electron radiation therapy (IOERT) combines surgery and ionizing radiation applied directly to an exposed unresected tumour mass or to a post-resection tumour bed. The radiation is collimated and conducted by a specific applicator docked to the linear accelerator. The dose distribution in tissues to be irradiated and in organs at risk can be planned through a pre-operative computed tomography (CT) study. However, surgical retraction of structures and resection of a tumour affecting normal tissues significantly modify the patient's geometry. Therefore, the treatment parameters (applicator dimension, pose (position and orientation), bevel angle, and beam energy) may require the original IOERT treatment plan to be modified depending on the actual surgical scenario. We propose the use of a multi-camera optical tracking system to reliably record the actual pose of the IOERT applicator in relation to the patient's anatomy in an environment prone to occlusion problems. This information can be integrated in the radio-surgical treatment planning system in order to generate a real-time accurate description of the IOERT scenario. We assessed the accuracy of the applicator pose by performing a phantom-based study that resembled three real clinical IOERT scenarios. The error obtained (2 mm) was below the acceptance threshold for external radiotherapy practice, thus encouraging future implementation of this approach in real clinical IOERT scenarios.
Similar articles
-
Image-guided intraoperative radiation therapy: current developments and future perspectives.Expert Rev Med Devices. 2014 Sep;11(5):431-4. doi: 10.1586/17434440.2014.929494. Epub 2014 Jun 14. Expert Rev Med Devices. 2014. PMID: 24931224
-
Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation.Z Med Phys. 2017 Sep;27(3):218-231. doi: 10.1016/j.zemedi.2016.07.002. Epub 2016 Aug 23. Z Med Phys. 2017. PMID: 27567405
-
Ultrasound-guided intraoperative electron beam radiation therapy: A phantom study.Phys Med. 2020 Oct;78:1-7. doi: 10.1016/j.ejmp.2020.06.021. Epub 2020 Sep 7. Phys Med. 2020. PMID: 32911372
-
Review of electron beam therapy physics.Phys Med Biol. 2006 Jul 7;51(13):R455-89. doi: 10.1088/0031-9155/51/13/R25. Epub 2006 Jun 20. Phys Med Biol. 2006. PMID: 16790918 Review.
-
Intraoperative radiation therapy first part: rationale and techniques.Crit Rev Oncol Hematol. 2006 Aug;59(2):106-15. doi: 10.1016/j.critrevonc.2005.11.004. Epub 2006 Jul 14. Crit Rev Oncol Hematol. 2006. PMID: 16844383 Review.
Cited by
-
Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.J Med Syst. 2016 Jan;40(1):7. doi: 10.1007/s10916-015-0368-2. Epub 2015 Oct 29. J Med Syst. 2016. PMID: 26573644
-
Treatment Planning in Intraoperative Radiation Therapy (IORT): Where Should We Go?Cancers (Basel). 2022 Jul 20;14(14):3532. doi: 10.3390/cancers14143532. Cancers (Basel). 2022. PMID: 35884591 Free PMC article.
-
ConoSurf: Open-source 3D scanning system based on a conoscopic holography device for acquiring surgical surfaces.Int J Med Robot. 2017 Sep;13(3):e1788. doi: 10.1002/rcs.1788. Epub 2016 Nov 21. Int J Med Robot. 2017. PMID: 27868345 Free PMC article.
-
Technical Note: Evaluation of audiovisual biofeedback smartphone application for respiratory monitoring in radiation oncology.Med Phys. 2020 Nov;47(11):5496-5504. doi: 10.1002/mp.14484. Epub 2020 Oct 10. Med Phys. 2020. PMID: 32969075 Free PMC article.
-
Full-Perception Robotic Surgery Environment with Anti-Occlusion Global-Local Joint Positioning.Sensors (Basel). 2023 Oct 22;23(20):8637. doi: 10.3390/s23208637. Sensors (Basel). 2023. PMID: 37896730 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical