Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Nov;30(5):437-43.

Characterization of fMet-Leu-Phe receptor-mediated Ca2+ influx across the plasma membrane of human neutrophils

  • PMID: 2430168

Characterization of fMet-Leu-Phe receptor-mediated Ca2+ influx across the plasma membrane of human neutrophils

T Andersson et al. Mol Pharmacol. 1986 Nov.

Abstract

N-Formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe) stimulation of human neutrophils leads to a rapid increase of the cytosolic free Ca2+ concentration, [Ca2+]i, which is significantly reduced by removal of extracellular calcium. In the present study we show that fMet-Leu-Phe-induced [Ca2+]i increases are, in part, mediated by an increase of the plasma membrane permeability to Ca2+. This conclusion is based on the following evidence. In the presence of extracellular calcium, addition of La3+ reduced the fMet-Leu-Phe-induced [Ca2+]i increase to approximately the same level as that observed in the absence of extracellular calcium. A net increase of the plasma membrane permeability for Mn2+ could be observed after fMet-Leu-Phe stimulation, as revealed by intracellular quenching of the quin2 signal. The influx of Mn2+, like that of Ca2+, was inhibited by La3+ and was more pronounced in the absence of extracellular Ca2+, suggesting competition for the same pathway. Temporal dissociation of intracellular Ca2+ release from stores and Ca2+ influx from the medium could be demonstrated by readdition of calcium to cells stimulated in the absence of this cation. This second [Ca2+]i increase could be abolished either by giving the specific chemotactic peptide receptor antagonist, BOC-Met-Leu-Phe, or Co2+. We could also show that the fMet-Leu-Phe-dependent Ca2+ influx was not due to the activation of voltage-dependent calcium channels since depolarization either by K+ or gramicidin D did not affect the resting [Ca2+]i, nor did it affect a subsequent [Ca2+]i increase induced by fMet-Leu-Phe. Furthermore, nifedipine and verapamil, at concentrations known to block classical voltage-dependent calcium channels, had no significant effects on the Ca2+ influx induced by fMet-Leu-Phe. We suggest that fMet-Leu-Phe promotes influx of Ca2+ ions across the plasma membrane of human neutrophils by opening of receptor-dependent calcium channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources