Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 10:1324:104-8.
doi: 10.1016/j.chroma.2013.11.025. Epub 2013 Nov 16.

Preparation and characterization of 4-isopropylcalix[4]arene-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilyl-appended silica particles as chiral stationary phase for high-performance liquid chromatography

Affiliations

Preparation and characterization of 4-isopropylcalix[4]arene-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilyl-appended silica particles as chiral stationary phase for high-performance liquid chromatography

S K Thamarai Chelvi et al. J Chromatogr A. .

Abstract

A new type of 4-isopropylcalix[4]arene-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)propylsilyl-appended silica particles (IPC4CD-HPS) has been prepared by treatment of bromoacetate-substituted (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)propylsilyl-appended silica particles (BACD-HPS) with 4-isopropylcalix[4]arene oxyanions in anhydrous N-methyl-2-pyrrolidone. The bonded silica IPC4CD-HPS has been successfully used as chiral stationary phase (CSP) in high-performance liquid chromatography (HPLC) for the first time. The synthetic stationary phase was characterized by means of elemental analysis and Fourier transform infrared spectroscopy. This new CSP has a chiral selector with two anchored functional moieties: 4-isopropylcalix[4]arene and β-cyclodextrin. The chromatographic performance of IPC4CD-HPS was investigated by separation of positional isomers of several disubstituted benzenes and enantiomers of some chiral drug compounds under reversed-phase conditions. The results showed that IPC4CD-HPS had excellent selectivity for the separation of aromatic positional isomers and enantiomers of chiral compounds due to the cooperative functioning of the anchored 4-isopropylcalix[4]arenes and β-cyclodextrins.

Keywords: 4-Isopropylcalix[4]arene, Chiral separation; Chiral stationary phase; High-performance liquid chromatography; β-Cyclodextrin.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources