Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 May;11(5):619-41.
doi: 10.1007/BF00988572.

Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture

Affiliations

Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture

U Blum et al. J Chem Ecol. 1985 May.

Abstract

Cucumber seedlings (Cucumis sativus cv. 'Early Green Cluster') ranging from 6 to 16 days of age were treated with various concentrations (0- 1 mM) of caffeic, ferulic,p-coumaric,p-hydroxybenzoic, protocatechuic, sinapic, syringic, and vanillic acids and mixtures of ferulic acid and one or two of the other phenolic acids. Seedlings were grown in full-strength Hoagland's solution which was changed every other day. Phenolic acid treatments were given with each nutrient solution change starting at day 6 or given once when seedlings were 13 or 14 days old. Leaf area, mean relative rates of leaf expansion, transpiration rates, water utilization, and the concentrations of the phenolic acids in nutrient solution were determined at one- or two-day intervals. Seedling dry weight was determined at final harvest. Seedling leaf area and dry weight were linearly related. Since leaf areas can be easily obtained without destructive sampling and leaf area expansion responds rapidly to phenolic acid treatments, it was utilized as the primary indicator of plant response. The resulting data suggested that a number of ferulic acid microbial metabolic products, as well as two other phenolic acids observed in soils (p-coumaric and syringic acid), can reduce seedling dry weight, leaf expansion, and water utilization of cucumber seedlings in a similar manner. The magnitude of impact of each of the phenolic acids, however, varied with phenolic acid and concentration. It appears that the inhibitory activity of these phenolic acids involved water relations of cucumber seedlings, since the phenolic acid treatments resulted in closure of stomata which then remained closed for several days after treatment. The data also demonstrated that the effects of mixtures of phenolic acids on cucumber seedlings may be synergistic, additive, or antagonistic. The type of response observed appeared to be related to the factor measured, the compounds in the nmixture, and the magnitued of inhibition associated with each compounds. The data also indicated that the effects of the various phenolic acids were reversible, since seedling leaf area increased rapidly once phenolic acids were removed from the root environment. Mean relative rates of leaf expansion recovered even in the presence of the various phenolic acids.

PubMed Disclaimer

References

    1. J Gen Microbiol. 1963 Aug;32:177-84 - PubMed
    1. J Chem Ecol. 1983 Aug;9(8):1185-201 - PubMed
    1. J Chem Ecol. 1984 Jan;10(1):161-70 - PubMed
    1. Appl Environ Microbiol. 1976 Nov;32(5):694-8 - PubMed
    1. J Chem Ecol. 1984 Aug;10(8):1169-91 - PubMed