Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Dec:10 Suppl:S180-5.
doi: 10.1513/AnnalsATS.201305-123AW.

Altered macrophage function in chronic obstructive pulmonary disease

Affiliations
Review

Altered macrophage function in chronic obstructive pulmonary disease

Pieter S Hiemstra. Ann Am Thorac Soc. 2013 Dec.

Abstract

The observation that macrophages are increased in chronic obstructive pulmonary disease (COPD) and are associated with COPD severity has led to a large number of studies on macrophage function in COPD. These studies have provided evidence that these cells contribute to tissue injury through the release of various mediators, including proteases such as matrix metalloprotease-12. In addition, it was found that macrophages in COPD have an impaired ability to clear respiratory pathogens and apoptotic cells. Macrophage phagocytic function in COPD can be restored at least in part, as shown by in vitro studies. In a search to further understand this altered function of macrophages in COPD, several studies have used a range of markers to phenotype macrophages in COPD. Macrophages constitute a heterogeneous cell population, and, currently, proinflammatory M1 and anti-inflammatory M2 and M2-like cells are considered to represent the extremes of a pattern of macrophage polarization. In COPD, there is no clear evidence for a predominance of one of these phenotypes, and an intermediate phenotype may be present. Future studies are needed to establish the nature of this apparent COPD-specific macrophage subset, and to link macrophage dysfunction to COPD phenotypes.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources