Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 7;86(1):685-93.
doi: 10.1021/ac4031175. Epub 2013 Dec 17.

Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography

Affiliations

Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography

Chia-Feng Tsai et al. Anal Chem. .

Abstract

Methodologies to enrich heterogeneous types of phosphopeptides are critical for comprehensive mapping of the under-explored phosphoproteome. Taking advantage of the distinct binding affinities of Ga(3+) and Fe(3+) for phosphopeptides, we designed a metal-directed immobilized metal ion affinity chromatography for the sequential enrichment of phosphopeptides. In Raji B cells, the sequential Ga(3+)-Fe(3+)-immobilized metal affinity chromatography (IMAC) strategy displayed a 1.5-3.5-fold superior phosphoproteomic coverage compared to single IMAC (Fe(3+), Ti(4+), Ga(3+), and Al(3+)). In addition, up to 92% of the 6283 phosphopeptides were uniquely enriched in either the first Ga(3+)-IMAC (41%) or second Fe(3+)-IMAC (51%). The complementary properties of Ga(3+) and Fe(3+) were further demonstrated through the exclusive enrichment of almost all of 1214 multiply phosphorylated peptides (99.4%) in the Ga(3+)-IMAC, whereas only 10% of 5069 monophosphorylated phosphopeptides were commonly enriched in both fractions. The application of sequential Ga(3+)-Fe(3+)-IMAC to human lung cancer tissue allowed the identification of 2560 unique phosphopeptides with only 8% overlap. In addition to the above-mentioned mono- and multiply phosphorylated peptides, this fractionation ability was also demonstrated on the basic and acidic phosphopeptides: acidophilic phosphorylation sites were predominately enriched in the first Ga(3+)-IMAC (72%), while Pro-directed (85%) and basophilic (79%) phosphorylation sites were enriched in the second Fe(3+)-IMAC. This strategy provided complementary mapping of different kinase substrates in multiple cellular pathways related to cancer invasion and metastasis of lung cancer. Given the fractionation ability and ease of tip preparation of this Ga(3+)-Fe(3+)-IMAC, we propose that this strategy allows more comprehensive characterization of the phosphoproteome both in vitro and in vivo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources