Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Dec;251(6 Pt 1):C872-82.
doi: 10.1152/ajpcell.1986.251.6.C872.

Water and nonelectrolyte permeability of isolated rat hepatocytes

Water and nonelectrolyte permeability of isolated rat hepatocytes

G Alpini et al. Am J Physiol. 1986 Dec.

Abstract

We have measured the diffusive permeability coefficients of isolated rat hepatocytes to 3H2O, [14C]urea, [14C]erythritol, [14C]mannitol, [3H]sucrose, and [3H]inulin, employing a technique previously developed for erythrocytes (Redwood et al., J. Gen. Physiol 64:706-729, 1974). Diffusion coefficients for the tracer molecules were measured in packed hepatocytes, supernatant fluid, and intracellular medium (lysed hepatocytes) and were calculated assuming one-dimensional semi-infinite diffusion through a homogeneous medium. By applying the series-parallel pathway model, the following permeability coefficients (10(-5) cm/sec) for the hepatocyte plasma membrane were obtained. 3H2O, 98.6 +/- 18.4; [14C]urea, 18.2 +/- 5.3; [14C]erythritol, 4.8 +/- 1.6; [14C]mannitol, 3.1 +/- 1.4; [3H]sucrose, 0; [3H]inulin, 0. These results indicate that isolated rat hepatocytes are highly permeable to water and polar nonelectrolytes, when compared with other transporting epithelia. This relatively high cellular permeability is consistent with a model in which nonelectrolyte permeation is via an aqueous pathway of equivalent pore diameter of 8-12 A. The finding that [14C]erythritol and [14C]mannitol cross the hepatocyte plasma membrane indicates that these molecules enter the bile canaliculus through the transcellular route. Conversely, the failure of [3H]sucrose and [3H]inulin to permeate the hepatocyte in the isolated condition supports the concept that biliary entry of these large carbohydrates, at least that fraction which cannot be accounted for by a vesicular mechanism, must occur via the transjunctional shunt pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources