Toward the complete assignment of the carbon nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor
- PMID: 2431707
- DOI: 10.1021/bi00368a001
Toward the complete assignment of the carbon nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor
Abstract
A total of 54 of the 58 alpha-carbon resonances and numerous side-chain carbon signals were individually assigned in the basic pancreatic trypsin inhibitor by using two-dimensional heteronuclear correlated and relayed coherence transfer spectroscopy with proton detection. No isotope enrichment was used, and the spectra were recorded in 5-mm sample tubes. The pulse sequences were optimized to eliminate, prior to phase cycling, the signals of protons attached to 12C. We have concentrated on assignments of carbons bearing a single hydrogen in view of a relatively easy interpretation of carbon relaxation times, and most of these carbon resonances could be assigned. Furthermore, we demonstrate that two-dimensional heteronuclear correlated and relayed coherence transfer spectra can be used to elucidate connectivities between degenerate resonances within proton spin systems that often occur in threonines and aromatic side chains.