Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jan 15;138(2):373-9.

T cell recognition of Mls. T cell clones demonstrate polymorphism between Mlsa, Mlsc, and Mlsd

  • PMID: 2432122

T cell recognition of Mls. T cell clones demonstrate polymorphism between Mlsa, Mlsc, and Mlsd

R Abe et al. J Immunol. .

Abstract

The determinants encoded by the minor lymphocyte stimulating locus (Mls) are defined as determinants that induce strong T cell proliferative responses in primary mixed lymphocyte reactions. Although the Mls locus was originally described as having four alleles, a, b, c, and d, a number of recent observations have led several investigators to challenge the idea that Mls is truly a polymorphic system. To better define this system of determinants recognized at high frequency by T cells, the present studies were undertaken to evaluate the polymorphism of Mls products. In the present study, the in vitro proliferative responses of Mlsa- and Mlsc-specific T cell clones were employed to analyze Mls products. The identification of determinants recognized by Mlsa- and Mlsc-reactive clones was established by the pattern of responses to stimulators derived from congenic strains, recombinant inbred strains, and backcross mice. T cell clones and unprimed T cells gave concordant responses that confirmed the Mlsa or Mlsc specificity of the cloned populations. With the use of these two sets of Mls-specific T cell clones, the existence or absence of polymorphism of Mls-encoded gene products was examined. It was found that Mlsa-specific cloned T cells responded to Mlsa but not Mlsc stimulators, whereas Mlsc-specific clones responded to Mlsc but not Mlsa. This reciprocal pattern of specificity indicates that the Mls system as currently defined is therefore truly polymorphic. In addition, it was observed that both Mlsa- and Mlsc-specific clones were stimulated by Mlsd stimulators. In particular, the possibility that Mlsa and Mlsc are not alleles but products of different loci and that Mlsd strains are those that express both Mlsa and Mlsc is considered.

PubMed Disclaimer

Publication types