Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;98(5):416-27.
doi: 10.1002/bdrb.21084. Epub 2013 Dec 9.

The effect on rat embryonic heart rate of Na+, K+, and Ca2+ channel blockers, and the human teratogen phenytoin, changes with gestational age

Affiliations

The effect on rat embryonic heart rate of Na+, K+, and Ca2+ channel blockers, and the human teratogen phenytoin, changes with gestational age

Mats F Nilsson et al. Birth Defects Res B Dev Reprod Toxicol. 2013 Oct.

Abstract

In this study, we compared the effects of four ion channel blockers on rat embryonic heart function during the organogenic period from gestational day (GD) 10 to 15, to determine the changes in dependence on ion channels during rat cardiac development. Rat embryos in culture were exposed to either the human ether-á-go-go-related gene potassium channel blocker, dofetilide (400 nM); the sodium channel blocker, lidocaine (250 μM); the L-type calcium channel blocker, nifedipine (1.8 μM); or the multichannel blocker, phenytoin (200 μM). Lidocaine slowed the heart rate (HR) with the effect becoming more severe with increasing GD. Dofetilide slowed the embryonic HR and caused arrhythmias with the most severe effect on GD 11 to 13. Nifedipine primarily caused a negative inotropic effect except on GD 10 when it stopped the heart in most embryos. Phenytoin stopped the heart of most GD 10 to 12 embryos while on GD 13 to 15 phenytoin slowed the heart. The results demonstrate that as the rat heart develops during the organogenic period its functional dependence on ion channels changes markedly. These changes are important for understanding drug effects on the embryo during pregnancy and the methodology used provides a simple procedure for assessing drug effects on the developing heart.

Keywords: embryo/fetal physiology; in vitro screens; pharmaceuticals; teratogenicity.

PubMed Disclaimer

LinkOut - more resources