Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions
- PMID: 24324401
- PMCID: PMC3839048
- DOI: 10.3389/fncel.2013.00228
Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions
Abstract
The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs). SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.
Keywords: Schwann cell; axon-glia interaction; microarray; neuronal activity; neuronal support; peripheral nervous system.
Figures

Similar articles
-
N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells.J Neurosci. 2002 May 15;22(10):4066-79. doi: 10.1523/JNEUROSCI.22-10-04066.2002. J Neurosci. 2002. PMID: 12019326 Free PMC article.
-
Metabolic Interaction Between Schwann Cells and Axons Under Physiological and Disease Conditions.Front Cell Neurosci. 2020 May 29;14:148. doi: 10.3389/fncel.2020.00148. eCollection 2020. Front Cell Neurosci. 2020. PMID: 32547370 Free PMC article.
-
ApoER2 and Reelin are expressed in regenerating peripheral nerve and regulate Schwann cell migration by activating the Rac1 GEF protein, Tiam1.Mol Cell Neurosci. 2015 Nov;69:1-11. doi: 10.1016/j.mcn.2015.09.004. Epub 2015 Sep 16. Mol Cell Neurosci. 2015. PMID: 26386179
-
Axon-glial signaling and the glial support of axon function.Annu Rev Neurosci. 2008;31:535-61. doi: 10.1146/annurev.neuro.30.051606.094309. Annu Rev Neurosci. 2008. PMID: 18558866 Review.
-
Molecular signaling mechanisms of axon-glia communication in the peripheral nervous system.Bioessays. 2015 May;37(5):502-13. doi: 10.1002/bies.201400172. Epub 2015 Feb 23. Bioessays. 2015. PMID: 25707700 Review.
Cited by
-
Peripheral glia diversity.J Anat. 2022 Nov;241(5):1219-1234. doi: 10.1111/joa.13484. Epub 2021 Jun 15. J Anat. 2022. PMID: 34131911 Free PMC article. Review.
-
Glutamate Activates AMPA Receptor Conductance in the Developing Schwann Cells of the Mammalian Peripheral Nerves.J Neurosci. 2017 Dec 6;37(49):11818-11834. doi: 10.1523/JNEUROSCI.1168-17.2017. Epub 2017 Oct 31. J Neurosci. 2017. PMID: 29089441 Free PMC article.
-
Modulation of Small RNA Signatures in Schwann-Cell-Derived Extracellular Vesicles by the p75 Neurotrophin Receptor and Sortilin.Biomedicines. 2020 Oct 24;8(11):450. doi: 10.3390/biomedicines8110450. Biomedicines. 2020. PMID: 33114403 Free PMC article.
-
Selective RNAi-silencing of Schwann cell Piezo1 alleviates mechanical hypersensitization following peripheral nerve injury.Res Sq [Preprint]. 2023 Oct 16:rs.3.rs-3405016. doi: 10.21203/rs.3.rs-3405016/v1. Res Sq. 2023. Update in: Mol Ther Methods Clin Dev. 2025 Feb 12;33(1):101433. doi: 10.1016/j.omtm.2025.101433. PMID: 37886453 Free PMC article. Updated. Preprint.
-
A therapeutic shock propels Schwann cells to proliferate in peripheral nerve injury.Brain Circ. 2016 Jul-Sep;2(3):138-140. doi: 10.4103/2394-8108.192520. Epub 2016 Oct 18. Brain Circ. 2016. PMID: 30276290 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases