Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014;48(1):71-8.
doi: 10.1021/es404280v. Epub 2013 Dec 11.

Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation

Affiliations

Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation

Daqing Mao et al. Environ Sci Technol. 2014.

Abstract

The propagation of antibiotic resistance genes (ARGs) represents a global threat to both human health and food security. Assessment of ARG reservoirs and persistence is therefore critical for devising and evaluating strategies to mitigate ARG propagation. This study developed a novel, internal standard method to extract extracellular DNA (eDNA) and intracellular DNA (iDNA) from water and sediments, and applied it to determine the partitioning of ARGs in the Haihe River basin in China, which drains an area of intensive antibiotic use. The concentration of eDNA was higher than iDNA in sediment samples, likely due to the enhanced persistence of eDNA when associated with clay particles and organic matter. Concentrations of sul1, sul2, tetW, and tetT antibiotic resistance genes were significantly higher in sediment than in water, and were present at higher concentrations as eDNA than as iDNA in sediment. Whereas ARGs (frequently located on plasmid DNA) were detected for over 20 weeks, chromosomally encoded 16S rRNA genes were undetectable after 8 weeks, suggesting higher persistence of plasmid-borne ARGs in river sediment. Transformation of indigenous bacteria with added extracellular ARG (i.e., kanamycin resistance genes) was also observed. Therefore, this study shows that extracellular DNA in sediment is a major ARG reservoir that could facilitate antibiotic resistance propagation.

PubMed Disclaimer

Publication types

LinkOut - more resources