Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jul 15;237(2):397-404.
doi: 10.1042/bj2370397.

Involvement of neuronal acceptors for dendrotoxin in its convulsive action in rat brain

Involvement of neuronal acceptors for dendrotoxin in its convulsive action in rat brain

A R Black et al. Biochem J. .

Abstract

Dendrotoxin, a snake-venom polypeptide, is a potent convulsant that facilitates transmitter release apparently by inhibition of voltage-sensitive K+ channels responsible for A-currents. A biologically active 125I-iodinated derivative of this toxin was prepared and used to characterize kinetically homogeneous non-interacting high-affinity acceptors in synaptic membranes from rat cerebral cortex and hippocampus. Binding of radiolabelled toxin from Dendroaspis angusticeps to its membrane acceptor protein was inhibitable by homologous polypeptides from other mamba snakes; most importantly, their rank order of potency was identical with that for their central neurotoxicities in rats, furnishing evidence for involvement of this binding component in the convulsive symptoms observed. Beta-Bungarotoxin, a presynaptically acting neurotoxin whose action on neurotransmitter release at the neuromuscular junction and effects on brain synaptosomes are antagonized by dendrotoxin, was only able to inhibit the binding of the 125I-labelled toxin with low efficacy, although dendrotoxin apparently interacts avidly with the acceptor sites for beta-bungarotoxin. This weak interaction of beta-bungarotoxin with the acceptor was not attributable to its phospholipolytic action. Other neurotoxins and ion-channel antagonists failed to affect the binding of dendrotoxin. The findings presented here, together with recent electrophysiological data, favour the interpretation that dendrotoxin binds to a membrane protein comprising, or closely associated with, this one group of voltage-dependent K+ channels.

PubMed Disclaimer

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Nature. 1962 Jul 21;195:281-3 - PubMed
    1. Proc Natl Acad Sci U S A. 1976 Jan;73(1):178-82 - PubMed
    1. Anal Biochem. 1976 May 7;72:248-54 - PubMed
    1. Biochim Biophys Acta. 1980 Feb 15;596(1):81-93 - PubMed

Publication types