Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
- PMID: 24329307
- DOI: 10.1103/PhysRevE.88.052718
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
Abstract
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
Similar articles
-
Membrane tubulation from giant lipid vesicles in alternating electric fields.Phys Rev E. 2016 Jan;93(1):012413. doi: 10.1103/PhysRevE.93.012413. Epub 2016 Jan 25. Phys Rev E. 2016. PMID: 26871107
-
Vesicle deformation and poration under strong dc electric fields.Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066316. doi: 10.1103/PhysRevE.83.066316. Epub 2011 Jun 21. Phys Rev E Stat Nonlin Soft Matter Phys. 2011. PMID: 21797486
-
Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field.J Biol Phys. 2010 Sep;36(4):339-54. doi: 10.1007/s10867-010-9187-3. Epub 2010 Mar 24. J Biol Phys. 2010. PMID: 21886342 Free PMC article.
-
Recent developments in the field of bending rigidity measurements on membranes.Adv Colloid Interface Sci. 2014 Jun;208:225-34. doi: 10.1016/j.cis.2014.03.003. Epub 2014 Mar 13. Adv Colloid Interface Sci. 2014. PMID: 24666592 Review.
-
Voltage-morphology coupling in biomimetic membranes: dynamics of giant vesicles in applied electric fields.Soft Matter. 2015 Oct 7;11(37):7232-6. doi: 10.1039/c5sm01050k. Epub 2015 Aug 28. Soft Matter. 2015. PMID: 26314545 Review.
Cited by
-
Differential regulation of GUV mechanics via actin network architectures.Biophys J. 2023 Jun 6;122(11):2068-2081. doi: 10.1016/j.bpj.2022.11.026. Epub 2022 Nov 17. Biophys J. 2023. PMID: 36397672 Free PMC article.
-
A comprehensive review on electrically modulated transport of soft, multiphase systems in microflow: Perspectives on drops and vesicles.Biomicrofluidics. 2025 Jun 4;19(3):031503. doi: 10.1063/5.0254950. eCollection 2025 May. Biomicrofluidics. 2025. PMID: 40488123 Review.
-
The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.PLoS One. 2016 Jul 8;11(7):e0158739. doi: 10.1371/journal.pone.0158739. eCollection 2016. PLoS One. 2016. PMID: 27391692 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources