Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase
- PMID: 24329494
- PMCID: PMC4019733
- DOI: 10.1042/CS20130660
Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase
Abstract
Although AngII (angiotensin II) and its receptor AT1R (AngII type 1 receptor) have been implicated in AAA (abdominal aortic aneurysm) formation, the proximal signalling events primarily responsible for AAA formation remain uncertain. Caveolae are cholesterol-rich membrane microdomains that serve as a signalling platform to facilitate the temporal and spatial localization of signal transduction events, including those stimulated by AngII. Cav1 (caveolin 1)-enriched caveolae in vascular smooth muscle cells mediate ADAM17 (a disintegrin and metalloproteinase 17)-dependent EGFR (epidermal growth factor receptor) transactivation, which is linked to vascular remodelling induced by AngII. In the present study, we have tested our hypothesis that Cav1 plays a critical role for the development of AAA at least in part via its specific alteration of AngII signalling within caveolae. Cav1-/- mice and the control wild-type mice were co-infused with AngII and β-aminopropionitrile to induce AAA. We found that Cav1-/- mice with the co-infusion did not develop AAA compared with control mice in spite of hypertension. We found an increased expression of ADAM17 and enhanced phosphorylation of EGFR in AAA. These events were markedly attenuated in Cav1-/- aortas with the co-infusion. Furthermore, aortas from Cav1-/- mice with the co-infusion showed less endoplasmic reticulum stress, oxidative stress and inflammatory responses compared with aortas from control mice. Cav1 silencing in cultured vascular smooth muscle cells prevented AngII-induced ADAM17 induction and activation. In conclusion, Cav1 appears to play a critical role in the formation of AAA and associated endoplasmic reticulum/oxidative stress, presumably through the regulation of caveolae compartmentalized signals induced by AngII.
Figures
References
-
- Fleming C, Whitlock EP, Beil TL, Lederle FA. Screening for abdominal aortic aneurysm: a best-evidence systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2005;142:203–211. - PubMed
-
- Sakalihasan N, Limet R, Defawe OD. Abdominal aortic aneurysm. Lancet. 2005;365:1577–1589. - PubMed
-
- Lu H, Rateri DL, Bruemmer D, Cassis LA, Daugherty A. Involvement of the renin-angiotensin system in abdominal and thoracic aortic aneurysms. Clin Sci (Lond) 2012;123:531–543. - PubMed
-
- Gavrila D, Li WG, McCormick ML, Thomas M, Daugherty A, Cassis LA, Miller FJ, Jr, Oberley LW, Dellsperger KC, Weintraub NL. Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:1671–1677. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
