Exploiting the curative potential of adoptive T-cell therapy for cancer
- PMID: 24329789
- PMCID: PMC3920180
- DOI: 10.1111/imr.12132
Exploiting the curative potential of adoptive T-cell therapy for cancer
Abstract
Adoptive T-cell therapy (ACT) is a potent and flexible cancer treatment modality that can induce complete, durable regression of certain human malignancies. Long-term follow-up of patients receiving tumor-infiltrating lymphocytes (TILs) for metastatic melanoma reveals a substantial subset that experienced complete, lasting tumor regression - and may be cured. Increasing evidence points to mutated gene products as the primary immunological targets of TILs from melanomas. Recent technological advances permit rapid identification of the neoepitopes resulting from these somatic gene mutations and of T cells with reactivity against these targets. Isolation and adoptive transfer of these T cells may improve TIL therapy for melanoma and permit its broader application to non-melanoma tumors. Extension of ACT to other malignancies may also be possible through antigen receptor gene engineering. Tumor regression has been observed following transfer of T cells engineered to express chimeric antigen receptors against CD19 in B-cell malignancies or a T-cell receptor against NY-ESO-1 in synovial cell sarcoma and melanoma. Herein, we review recent clinical trials of TILs and antigen receptor gene therapy for advanced cancers. We discuss lessons from this experience and consider how they might be applied to realize the full curative potential of ACT.
Keywords: T cells; antigens; cancer; gene therapy; immunotherapies; tumor immunity.
© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Conflict of interest statement
The authors have no conflicts of interest to declare.
References
-
- Fojo T, Parkinson DR. Biologically targeted cancer therapy and marginal benefits: are we making too much of too little or are we achieving too little by giving too much? Clin Cancer Res. 2010;16:5972–5980. - PubMed
-
- Atkins MB, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–2116. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
