Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Sep;20(3):194-201.
doi: 10.1016/j.spen.2013.09.001.

Mitochondrial dysfunction in demyelinating diseases

Affiliations
Review

Mitochondrial dysfunction in demyelinating diseases

Karen S Carvalho. Semin Pediatr Neurol. 2013 Sep.

Abstract

Dysfunction of the mitochondrial (mt) system is thought to play an important role in the mechanism of progression of various neurodegenerative disorders, including demyelinating disorders. They are characterized by neuroinflammation, ultimately leading to neurodegeneration. Mitochondria (mt) dysfunction is closely related to the mechanism of neuroinflammation, causing increased production of reactive oxygen species, which is detrimental to neurons and glia. Vice versa, neuroinflammation is increasingly recognized to produce mt failure, which then contributes to further neuronal injury and degeneration. Multiple sclerosis and X-linked adrenoleukodystrophy are examples of neurodemyelinating diseases that despite having a diverse etiology have in common a progressive course and significant neuroinflammation and neurodegeneration, leading to severe neurologic disability. The scientific community has become increasingly interested in how mt dysfunction relates to neuroinflammation and demyelination and what role it may play in the natural history of progressive demyelinating diseases. Research studies investigating how mt failure contributes to the progression of these conditions are emerging. A better understanding of the role of oxidative stress in progressive inflammatory demyelinating diseases might generate new potential neuroprotective therapeutic approaches for these devastating neurologic conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources