Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb;29(2):240-6.
doi: 10.1093/ndt/gft461. Epub 2013 Dec 12.

Vascular endothelium: a vulnerable transit zone for merciless sodium

Affiliations
Review

Vascular endothelium: a vulnerable transit zone for merciless sodium

Hans Oberleithner. Nephrol Dial Transplant. 2014 Feb.

Abstract

In humans, when plasma sodium concentration rises slightly beyond 140 mM, vascular endothelium sharply stiffens and nitric oxide release declines. In search of a vascular sodium sensor, the endothelial glycocalyx was identified as being a negatively charged biopolymer capable of selectively buffering sodium ions. Sodium excess damages the glycocalyx and renders vascular endothelium increasingly permeable for sodium. In the long term, sodium accumulates in the interstitium and gradually damages the organism. It was discovered that circulating red blood cells (RBC) 'report' surface properties of the vascular endothelium. To some extent, the RBC glycocalyx mirrors the endothelial glycocalyx. A poor (charge-deprived) endothelial glycocalyx causes a poor RBC glycocalyx and vice versa. This observation led to the assumption that the current state of an individual's vascular endothelium in terms of electrical surface charges and sodium-buffering capabilities could be read simply from a blood sample. Recently, a so-called salt blood test was introduced that quantifies the RBC sodium buffer capacity and thus characterizes the endothelial function. The arguments are outlined in this article spanning a bridge from cellular nano-mechanics to clinical application.

Keywords: blood vessel; glycocalyx; hypertension; salt sensitivity; sodium channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms