Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987;325(6103):450-2.
doi: 10.1038/325450a0.

Failure to find holes in the T-cell repertoire

Failure to find holes in the T-cell repertoire

K Ogasawara et al. Nature. 1987.

Abstract

The ability of an animal to respond to a given antigenic peptide depends on its major histocompatibility complex (MHC) type. Some peptides are not immunogenic when combined with a particular form of the MHC-encoded molecule. This non-responsiveness is regulated by immune response (Ir) genes and is thought to arise by one of two distinct mechanisms. Either the MHC-encoded molecules physically fail to interact with the antigen, preventing the activation of T cells with appropriate receptors, or they limit the expressed repertoire of T cell clones so that no T cells are available to be activated by existing complexes of MHC-encoded molecules and antigen. Experimental evidence has been generated to support both mechanisms. However, the relative importance of each has not been clearly established. In this study we started with a peptide that was immunogenic in B10 mice; it was thus known to be able to interact with the MHC molecule, and T cells existed which could recognise the peptide-MHC complex. Based on previous experiments, we then changed only those parts of the peptide that we thought interacted with the T-cell receptor. All the new analogues created were still immunogenic, confirming that the amino-acid substitutions that we had made did not prevent productive interactions with the MHC-encoded molecule. No limitations ('holes') in the T-cell repertoire were found. The experiments demonstrate the vast potential of the T-cell population to recognize many different analogues, each in a unique way, and suggest that constraints on the diversity of the T-cell repertoire may not be a major explanation for Ir gene defects.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources