Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Mar;138(1):234-48.
doi: 10.1093/toxsci/kft278. Epub 2013 Dec 11.

Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice

Affiliations
Comparative Study

Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice

Satoko Kakiuchi-Kiyota et al. Toxicol Sci. 2014 Mar.

Abstract

Development of LNA gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by non-target mediated hepatotoxicity issues. In the present study, we investigated hepatic transcription profiles of mice administered non-toxic and toxic LNA gapmers. After repeated administration, a toxic LNA gapmer (TS-2), but not a non-toxic LNA gapmer (NTS-1), caused hepatocyte necrosis and increased serum alanine aminotransferase levels. Microarray data revealed that, in addition to gene expression patterns consistent with hepatotoxicity, 17 genes in the clathrin-mediated endocytosis (CME) pathway were altered in the TS-2 group. TS-2 significantly down-regulated myosin 1E (Myo1E), which is involved in release of clathrin-coated pits from plasma membranes. To map the earliest transcription changes associated with LNA gapmer-induced hepatotoxicity, a second microarray analysis was performed using NTS-1, TS-2, and a severely toxic LNA gapmer (HTS-3) at 8, 16, and 72 h following a single administration in mice. The only histopathological change observed was minor hepatic hypertrophy in all LNA groups across time points. NTS-1, but not 2 toxic LNA gapmers, increased immune response genes at 8 and 16 h but not at 72 h. TS-2 significantly perturbed the CME pathway only at 72 h, while Myo1E levels were decreased at all time points. In contrast, HTS-3 modulated DNA damage pathway genes at 8 and 16 h and also modulated the CME pathway genes (but not Myo1E) at 16 h. Our results may suggest that different LNAs modulate distinct transcriptional genes and pathways contributing to non-target mediated hepatotoxicity in mice.

Keywords: LNA gapmers; antisense oligonucleotide; clathrin-mediated endocytosis; hepatotoxicity; microarray analysis.

PubMed Disclaimer

Publication types

MeSH terms