Medical image file formats
- PMID: 24338090
- PMCID: PMC3948928
- DOI: 10.1007/s10278-013-9657-9
Medical image file formats
Abstract
Image file format is often a confusing aspect for someone wishing to process medical images. This article presents a demystifying overview of the major file formats currently used in medical imaging: Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Minc, and Digital Imaging and Communications in Medicine (Dicom). Concepts common to all file formats, such as pixel depth, photometric interpretation, metadata, and pixel data, are first presented. Then, the characteristics and strengths of the various formats are discussed. The review concludes with some predictive considerations about the future trends in medical image file formats.
Similar articles
-
Radtools: R utilities for convenient extraction of medical image metadata.F1000Res. 2018 Dec 24;7:ISCB Comm J-1976. doi: 10.12688/f1000research.17139.3. eCollection 2018. F1000Res. 2018. PMID: 31131079 Free PMC article.
-
DICOM demystified: a review of digital file formats and their use in radiological practice.Clin Radiol. 2005 Nov;60(11):1133-40. doi: 10.1016/j.crad.2005.07.003. Clin Radiol. 2005. PMID: 16223609 Review.
-
NIfTI-MRS: A standard data format for magnetic resonance spectroscopy.Magn Reson Med. 2022 Dec;88(6):2358-2370. doi: 10.1002/mrm.29418. Epub 2022 Sep 11. Magn Reson Med. 2022. PMID: 36089825 Free PMC article.
-
The effects of different image file formats and image-analysis software programs on dental radiometric digital evaluations.Dentomaxillofac Radiol. 2001 Jan;30(1):50-5. doi: 10.1038/sj/dmfr/4600570. Dentomaxillofac Radiol. 2001. PMID: 11175274
-
Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards.J Digit Imaging. 2018 Aug;31(4):568-577. doi: 10.1007/s10278-017-0045-8. J Digit Imaging. 2018. PMID: 29344752 Free PMC article. Review.
Cited by
-
Deep Learning Hybrid Techniques for Brain Tumor Segmentation.Sensors (Basel). 2022 Oct 26;22(21):8201. doi: 10.3390/s22218201. Sensors (Basel). 2022. PMID: 36365900 Free PMC article.
-
Few-Shot Learning for Medical Image Segmentation Using 3D U-Net and Model-Agnostic Meta-Learning (MAML).Diagnostics (Basel). 2024 Jun 7;14(12):1213. doi: 10.3390/diagnostics14121213. Diagnostics (Basel). 2024. PMID: 38928629 Free PMC article.
-
DeepNeuro: an open-source deep learning toolbox for neuroimaging.Neuroinformatics. 2021 Jan;19(1):127-140. doi: 10.1007/s12021-020-09477-5. Neuroinformatics. 2021. PMID: 32578020 Free PMC article.
-
AM-UNet: automated mini 3D end-to-end U-net based network for brain claustrum segmentation.Multimed Tools Appl. 2022;81(25):36171-36194. doi: 10.1007/s11042-021-11568-7. Epub 2022 Jan 8. Multimed Tools Appl. 2022. PMID: 35035265 Free PMC article.
-
Age Prediction Based on Brain MRI Image: A Survey.J Med Syst. 2019 Jul 11;43(8):279. doi: 10.1007/s10916-019-1401-7. J Med Syst. 2019. PMID: 31297614
References
-
- The Encyclopedia of Graphics File Formats. http://www.fileformat.info/mirror/egff/ (accessed in June 2013)
-
- Clunie DA. Lossless compression of grayscale medical images: effectiveness of traditional and state-of-the-art approaches. Imaging: SPIE-Medical; 2000. pp. 74–84.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources