Whole-brain three-dimensional T2-weighted BOLD functional magnetic resonance imaging at 7 Tesla
- PMID: 24338901
- PMCID: PMC4055555
- DOI: 10.1002/mrm.25055
Whole-brain three-dimensional T2-weighted BOLD functional magnetic resonance imaging at 7 Tesla
Abstract
Purpose: A new acquisition scheme for T2-weighted spin-echo BOLD fMRI is introduced.
Methods: It uses a T2-preparation module to induce blood-oxygenation-level-dependent (BOLD) contrast, followed by a single-shot three-dimensional (3D) fast gradient-echo readout with short echo time (TE). It differs from most spin-echo BOLD sequences in that BOLD contrast is generated before the readout, which eliminates the "dead time" due to long TE required for T2 contrast, and substantially improves acquisition efficiency. This approach, termed "3D T2prep-GRE," was implemented at 7 Tesla (T) with a typical spatial (2.5 × 2.5 × 2.5 mm(3) ) and temporal (TR = 2.3 s) resolution for functional MRI (fMRI) and whole-brain coverage (55 slices), and compared with the widely used 2D spin-echo EPI sequence.
Results: In fMRI experiments of simultaneous visual/motor activities, 3D T2prep-GRE showed minimal distortion and little signal dropout across the whole brain. Its lower power deposition allowed greater spatial coverage (55 versus 17 slices with identical TR, resolution and power level), temporal SNR (60% higher) and CNR (35% higher) efficiency than 2D spin-echo EPI. It also showed smaller T2* contamination.
Conclusion: This approach is expected to be useful for ultra-high field fMRI, especially for regions near air cavities. The concept of using T2-preparation to generate BOLD contrast can be combined with many other sequences at any field strength.
Keywords: GRE; SE BOLD; T2 preparation; TFE; blood-oxygenation-level-dependent; fast gradient echo; high field; turbo field echo.
© 2013 Wiley Periodicals, Inc.
Figures








References
-
- Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X. Imaging brain function in humans at 7 Tesla. Magn Reson Med. 2001;45(4):588–594. - PubMed
-
- Yacoub E, Duong TQ, Van De Moortele PF, Lindquist M, Adriany G, Kim SG, Ugurbil K, Hu X. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med. 2003;49(4):655–664. - PubMed
-
- Uludag K, Muller-Bierl B, Ugurbil K. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage. 2009;48(1):150–165. - PubMed
-
- Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med. 1995;34(4):555. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources