Cortical and hippocampal correlates of deliberation during model-based decisions for rewards in humans
- PMID: 24339770
- PMCID: PMC3854511
- DOI: 10.1371/journal.pcbi.1003387
Cortical and hippocampal correlates of deliberation during model-based decisions for rewards in humans
Abstract
How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward - such as when planning routes using a cognitive map or chess moves using predicted countermoves - and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to be recalled during choice formation.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures













References
-
- Dickinson A, Balleine BW (2002) The role of learning in the operation of motivational systems. In: Gallistel CR, Pashler HV, editors. Stevens Handbook of Experimental Psychology. Vol. 3: Learning, Motivation and Emotion. New York, NY: John Wiley & Sons Inc. pp. 497–533.
-
- Dickinson A (1980) Contemporary Animal Learning Theory. Cambridge: Cambridge University Press.
-
- Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience 8: 1704–1711. - PubMed
-
- Thorndike EL (1911) Animal Intelligence. New York: Macmillan.
-
- Barto AC (1995) Adaptive Critics and the Basal Ganglia. In: Houk JC, Davis JL, Beiser DG, editors. Models of information processing in the basal ganglia, Cambridge, MA: MIT Press. pp. 215–232.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous