Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2014 Jan;133(1):22-9.
doi: 10.1542/peds.2013-1760. Epub 2013 Dec 16.

Accuracy of pulse oximetry in children

Affiliations
Observational Study

Accuracy of pulse oximetry in children

Patrick A Ross et al. Pediatrics. 2014 Jan.

Abstract

Objective: For children with cyanotic congenital heart disease or acute hypoxemic respiratory failure, providers frequently make decisions based on pulse oximetry, in the absence of an arterial blood gas. The study objective was to measure the accuracy of pulse oximetry in the saturations from pulse oximetry (SpO2) range of 65% to 97%.

Methods: This institutional review board-approved prospective, multicenter observational study in 5 PICUs included 225 mechanically ventilated children with an arterial catheter. With each arterial blood gas sample, SpO2 from pulse oximetry and arterial oxygen saturations from CO-oximetry (SaO2) were simultaneously obtained if the SpO2 was ≤ 97%.

Results: The lowest SpO2 obtained in the study was 65%. In the range of SpO2 65% to 97%, 1980 simultaneous values for SpO2 and SaO2 were obtained. The bias (SpO2 - SaO2) varied through the range of SpO2 values. The bias was greatest in the SpO2 range 81% to 85% (336 samples, median 6%, mean 6.6%, accuracy root mean squared 9.1%). SpO2 measurements were close to SaO2 in the SpO2 range 91% to 97% (901 samples, median 1%, mean 1.5%, accuracy root mean squared 4.2%).

Conclusions: Previous studies on pulse oximeter accuracy in children present a single number for bias. This study identified that the accuracy of pulse oximetry varies significantly as a function of the SpO2 range. Saturations measured by pulse oximetry on average overestimate SaO2 from CO-oximetry in the SpO2 range of 76% to 90%. Better pulse oximetry algorithms are needed for accurate assessment of children with saturations in the hypoxemic range.

Keywords: congenital heart disease/defects; heart defects; hypoxia; mechanical ventilation; oximetry; pediatric.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources