Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Mar 5;262(7):3065-73.

Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin

  • PMID: 2434495
Free article

Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin

G Meissner et al. J Biol Chem. .
Free article

Abstract

A subpopulation of canine cardiac sarcoplasmic reticulum vesicles has been found to contain a "Ca2+ release channel" which mediates the release of intravesicular Ca2+ stores with rates sufficiently rapid to contribute to excitation-contraction coupling in cardiac muscle. 45Ca2+ release behavior of passively and actively loaded vesicles was determined by Millipore filtration and with the use of a rapid quench apparatus using the two Ca2+ channel inhibitors, Mg2+ and ruthenium red. At pH 7.0 and 5-20 microM external Ca2+, cardiac vesicles released half of their 45Ca2+ stores within 20 ms. Ca2+-induced Ca2+ release was inhibited by raising and lowering external Ca2+ concentration, by the addition of Mg2+, and by decreasing the pH. Calmodulin reduced the Ca2+-induced Ca2+ release rate 3-6-fold in a reaction that did not appear to involve a calmodulin-dependent protein kinase. Under various experimental conditions, ATP or the nonhydrolyzable ATP analog, adenosine 5'-(beta, gamma-methylene)triphosphate (AMP-PCP), and caffeine stimulated 45Ca2+ release 2-500-fold. Maximal release rates (t1/2 = 10 ms) were observed in media containing 10 microM Ca2+ and 5 mM AMP-PCP or 10 mM caffeine. An increased external Ca2+ concentration (greater than or equal to 1 mM) was required to optimize the 45Ca2+ efflux rate in the presence of 8 mM Mg2+ and 5 mM AMP-PCP. These results suggest that cardiac sarcoplasmic reticulum contains a ligand-gated Ca2+ channel which is activated by Ca2+, adenine nucleotide, and caffeine, and inhibited by Mg2+, H+, and calmodulin.

PubMed Disclaimer

Publication types

LinkOut - more resources