Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;9(12):e1003769.
doi: 10.1371/journal.ppat.1003769. Epub 2013 Dec 12.

LysM effectors: secreted proteins supporting fungal life

Affiliations

LysM effectors: secreted proteins supporting fungal life

Anja Kombrink et al. PLoS Pathog. 2013.
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Three-dimensional structure of the Cladosporium fulvum LysM effector Ecp6.
Two LysM domains of Ecp6 (LysM1 and LysM3) cooperate to form a binding groove that binds a single chitin oligosaccharide molecule (chitin tetramer oligosaccharide in red) with picomolar affinity. The remaining, singular LysM domain (LysM2) also has a functional chitin-binding site, although its affinity for chitin binding is significantly lower than that of the composite binding site.
Figure 2
Figure 2. Overview of the diverse roles that fungal LysM effectors may play in fungal physiology.
LysM effectors may act during host colonization (upper panels) and outside the host (lower panels). Pathogen LysM effectors have been implicated in two different pathogenicity-related processes (upper panels). Firstly, LysM effectors may protect fungal hyphae against degradation by hydrolytic enzymes secreted by the host (1). Secondly, LysM effectors may secure fungal cell wall–derived chitin fragments so that chitin cannot stimulate an immune response because LysM effectors efficiently scavenge chitin fragments (2), or interfere with host receptor activation by preventing ligand-induced dimerization (3). As LysM effectors also occur in nonpathogenic fungi (lower panels), they may protect fungal hyphae against hydrolytic enzymes secreted by mycoparasites (4). In addition, chitin sequestration might prevent attraction of such microbes (5). Some LysM effectors may recognize chitin-related carbohydrates such as peptidoglycan and immobilize bacterial competitors (6).

Similar articles

Cited by

References

    1. Lowe RGT, Howlett BJ (2012) Indifferent, affectionate, or deceitful: lifestyles and secretomes of fungi. PLoS Pathog 8: e1002515 doi:10.1371/journal.ppat.1002515 - DOI - PMC - PubMed
    1. de Jonge R, Bolton MD, Thomma BPHJ (2011) How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr Opin Plant Biol 14: 1–7. - PubMed
    1. Gijzen M, Nürnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67: 1800–1807. - PubMed
    1. Santhanam P, van Esse HP, Albert I, Faino L, Nürnberger T, et al. (2013) Evidence for functional diversification within a fungal NEP1-like protein family. Mol Plant Microbe Interact 26: 278–286. - PubMed
    1. de Jonge R, Thomma BPHJ (2009) Fungal LysM effectors – extinguishers of host immunity? Trends Microbiol 17: 151–157. - PubMed

Publication types