Importance of the hexagonal lipid phase in biological membrane organization
- PMID: 24348497
- PMCID: PMC3848315
- DOI: 10.3389/fpls.2013.00494
Importance of the hexagonal lipid phase in biological membrane organization
Abstract
Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.
Keywords: glycerolipid; hexagonal phase; lipid bilayers; lipid phase; membrane domains.
Figures


Similar articles
-
The phase behavior of cationic lipid-DNA complexes.Biophys J. 2000 Apr;78(4):1681-97. doi: 10.1016/S0006-3495(00)76720-8. Biophys J. 2000. PMID: 10733951 Free PMC article.
-
Effect of independent variations in fatty acid structure and chain length on lipid polar headgroup composition in Acholeplasma laidlawii B membranes: regulation of lamellar/nonlamellar phase propensity.Biochemistry. 2003 Feb 11;42(5):1309-17. doi: 10.1021/bi026923j. Biochemistry. 2003. PMID: 12564934
-
Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane.Biochim Biophys Acta. 2007 Jan;1768(1):67-75. doi: 10.1016/j.bbamem.2006.06.006. Epub 2006 Jun 7. Biochim Biophys Acta. 2007. PMID: 16843433
-
A lipid-phase separation model of low-temperature damage to biological membranes.Cryobiology. 1985 Apr;22(2):128-46. doi: 10.1016/0011-2240(85)90167-1. Cryobiology. 1985. PMID: 3920005 Review.
-
The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.Biochim Biophys Acta. 2014 Jun;1838(6):1451-66. doi: 10.1016/j.bbamem.2013.10.019. Epub 2013 Nov 1. Biochim Biophys Acta. 2014. PMID: 24189436 Review.
Cited by
-
How Does the Seed Pre-Germinative Metabolism Fight Against Imbibition Damage? Emerging Roles of Fatty Acid Cohort and Antioxidant Defence.Front Plant Sci. 2019 Nov 21;10:1505. doi: 10.3389/fpls.2019.01505. eCollection 2019. Front Plant Sci. 2019. PMID: 31824536 Free PMC article.
-
An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time.Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2100036119. doi: 10.1073/pnas.2100036119. Epub 2022 Jun 30. Proc Natl Acad Sci U S A. 2022. PMID: 35771940 Free PMC article.
-
Stacks of monogalactolipid bilayers can transform into a lattice of water channels.iScience. 2023 Sep 9;26(10):107863. doi: 10.1016/j.isci.2023.107863. eCollection 2023 Oct 20. iScience. 2023. PMID: 37766978 Free PMC article.
-
Structure, biogenesis, and evolution of thylakoid membranes.Plant Cell. 2024 Oct 3;36(10):4014-4035. doi: 10.1093/plcell/koae102. Plant Cell. 2024. PMID: 38567528 Free PMC article. Review.
-
The secret life of RNA and lipids.RNA Biol. 2025 Dec;22(1):1-28. doi: 10.1080/15476286.2025.2526903. Epub 2025 Jul 16. RNA Biol. 2025. PMID: 40613519 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources
Other Literature Sources