Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Dec 12;7(12):e2320.
doi: 10.1371/journal.pntd.0002320. eCollection 2013.

Dengue research funded by the European Commission-scientific strategies of three European dengue research consortia

Collaborators, Affiliations
Review

Dengue research funded by the European Commission-scientific strategies of three European dengue research consortia

Thomas Jaenisch et al. PLoS Negl Trop Dis. .

Erratum in

  • PLoS Negl Trop Dis. 2014 Apr;8(4):e2883
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. The world map of the three EU-funded dengue consortia.
IDAMS: UKL-HD: Heidelberg University Hospital, Germany (Coordinator); UOXF.AT: Oxford University, UK; OUCRU: Oxford University Clinical Research Unit, Vietnam; LSTM: Liverpool School of Tropical Medicine, UK; IRB: Fondazione per l'Istituto di Ricerca in Biomedicina, Switzerland; WHO: World Health Organization - Special Programme for Training and Research in Tropical Diseases, Switzerland/Int. Partner; UMAL: University of Malaya Medical Center, Malaysia; UGM: University Gadjah Madah, Indonesia; AHC: Friends without a Border - Angkor Hospital for Children, Cambodia; IPK: Institute Of Tropical Medicine “Pedro Kouri”, Cuba; HNNBB: Ministry of Health - Hospital National de Ninos Benjamin Bloom, El Salvador; UECE: Fundacao Universidade Estadual do Ceara, Brazil; ERGO: Environmental Research Group Oxford Limited, UK; INDEPTH: INDEPTH-Network, Ghana; RCCC: Red Cross/Red Crescent Climate Centre, Netherlands; UC: University of Carabobo, Venezuela; FIOCRUZ: Fundacao Oswaldo Cruz, Brazil. DENFREE: IPP: Institut Pasteur, France (Coordinator); IMPERIAL COLLEGE: Imperial College, UK; BNI-HAMBURG: Bernard Nocht Institute, Germany; MAH: Mahidol University, Thailand; IPC: Institut Pasteur, Cambodia; IC3: Fundacio Institut Catala De Ciencies Del Clima, Spain; UROUEN: University Of Rouen, France; CNRS: Centre Nationale de la Récherche Scientifique, France; FFCUL: Cmaf, Fundacao Da Faculdade De Ciencias Da Universidade De Lisboa, Portugal; IPATIMUP: Instituto De Patologia E Imunologia Molecular Da Universidade Do Porto, Portugal; BCP: Biocomputing Platforms Ltd. Oy, Finland; AMPTEC: Amptec Ltd., Germany; RIOTECH: Riotech Pharmaceticals Ltd., UK; IPK: Institute Of Tropical Medicine “Pedro Kouri”, Cuba. DENGUETOOLS: UmU: Umea University, Sweden (Coordinator); SRL: Epidemiological Unit, Ministry of Health, Sri Lanka; TDX: TwistDx Ltd., Cambridge, UK; UMAL: University of Malaya, Malaysia; OXTC: Oxited Ltd., Oxford, UK; MAH: Mahidol University, Thailand; LSTMH: London School of Hygiene and Tropical Medicine, UK; STPH: Swiss Tropical and Public Health Institute, Switzerland; IPP: Institut Pasteur, France; UKL-HD: Heidelberg University Hospital, Germany; DKNS: Duke-NUS Graduate Medical School Singapore; USP: University of São Paulo, Brazil; ISCIII : Instituto de Salud Carlos III, Spain; EID: Entente Inter-Départementale pour la Démoustication du littoral méditerranéen, France. The two partners University of Carabobo (UC, Venezuela) and Fundacao Oswaldo Cruz (FIOCRUZ, Brazil) have been recently accepted to the IDAMS consortium. The amendment request submitted for approval to the European Commission is on-going.
Figure 2
Figure 2. Structure of the work packages (WP) of the IDAMS consortium.
The core of the IDAMS project focuses on parallel strategies aimed at: (1) Improving diagnosis and clinical management of dengue through two linked work packages designed a) to identify readily available clinical and laboratory parameters and/or viral and immunological markers that differentiate between dengue and other common febrile illness within three days of fever onset, and b) to identify any of the available markers that are predictive of the likelihood of evolving to a more severe disease course. (2) Assessing the risk of dengue spread though linked work packages focused on a) mapping and modeling techniques to define the current extent of dengue disease globally and to evaluate possible scenarios of spread or risk to previously uninfected regions in the future, and b) developing effective and affordable early warning and outbreak response systems. These four work packages are supported by a fifth work package dedicated to networking and translational activities to ensure that outputs from the various research activities are used to maximal advantage. A sixth work package will focus on administrative issues.
Figure 3
Figure 3. Structure of the work packages (WP) of the DENFREE consortium.
For the DENFREE project work package (WP) 1 (Index case community study of the epidemiology of dengue) is a central WP, which will provide data and biological samples for other WPs. This WP is a multicentric, prospective study in Cambodia and Thailand, which will characterize local DENV transmission patterns, identify subclinical infections for mosquito transmission studies (WP5 entomology), establish empirical mosquito, human density, and geo-spatial data for use in fine-scale and agent-based simulation models (WP3 climate prediction and WP4 epidemiological models), establish a biobank of biological samples from patients, household members, and mosquito vectors for further study in other WPs (WP2 diagnostics, WP6 virology, WP7 immunology, and WP8 human genetics), and test novel diagnostic and prognostic tools developed by WP2. Contributions from each WP will bring complementary help to the consortium to achieve the main aims. WP2 will develop new point-of-care diagnostic tools that can be used in the community to screen subclinical individuals in epidemic regions and to test for DENV in mosquito samples, thereby validating a new mosquito trap tool developed by WP5. WP3 and WP4, by using better surveillance data, will help determine the underlying factors, extent, and course of a DENV epidemic. Altogether, we will provide a new strategy for dengue surveillance for better control of DENV transmission.
Figure 4
Figure 4. Structure of the work packages (WP) of the DengueTools consortium.
The DengueTools project is comprised of 12 work packages around the following three research areas: Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring. Research area 2: Develop novel strategies to prevent dengue in children. Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vector competence, global mobility, and climate change.

References

    1. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, et al. (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8: S7–16. - PMC - PubMed
    1. WHO (2012) Dengue and severe dengue. WHO Media centre Available: http://www.who.int/mediacentre/factsheets/fs117/en/.
    1. Suaya J. et al... (2007) Dengue Burden of Disease and Cost of Illness. TDR/SWG/08.
    1. Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92: 1377–90, x. - PubMed
    1. Earnest A, Tan SB, Wilder-Smith A (2011) Meteorological factors and El Nino Southern Oscillation are independently associated with dengue infections. Epidemiol Infect 1–8 doi: 10.1017/S095026881100183X - DOI - PubMed

Publication types