[Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring]
- PMID: 24351566
[Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring]
Abstract
Objective: To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China.
Methods: The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods.
Results: In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were secondary particles dust, industry dust and vehicle emissions (49.82%) and construction dust (33.71%). The main characteristic pollution element was Pb(57.340 (5.004-241.559) µg/m(3)).Enrichment factors of Zn, Pb, As and Cd in PM2.5 were higher than those in PM10 both in Beijing and Urumqi.
Conclusion: The major sources of the atmospheric particles PM10 and PM2.5 in Beijing were cement dust from construction sites and sand dust from soil; while the major sources of those in Urumqi were pollution by smoke and sand dust from burning coal. The major sources of the atmospheric particles PM10 in Qingdao were cement dust from construction sites; however, the major sources of PM2.5 there were secondary particles dust, industry dust and vehicle emissions. According to our study, the heavy metal elements were likely to gather in PM2.5.
Similar articles
-
Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment.Environ Pollut. 2018 May;236:514-528. doi: 10.1016/j.envpol.2018.01.116. Environ Pollut. 2018. PMID: 29428706
-
Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China.Environ Pollut. 2018 Feb;233:714-724. doi: 10.1016/j.envpol.2017.10.123. Epub 2017 Nov 7. Environ Pollut. 2018. PMID: 29126093
-
PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China.Sci Total Environ. 2016 Nov 15;571:1155-63. doi: 10.1016/j.scitotenv.2016.07.115. Epub 2016 Jul 21. Sci Total Environ. 2016. PMID: 27450962
-
Source apportionment and toxicity assessment of PM2.5-bound PAHs in a typical iron-steel industry city in northeast China by PMF-ILCR.Sci Total Environ. 2020 Apr 15;713:136428. doi: 10.1016/j.scitotenv.2019.136428. Epub 2020 Jan 13. Sci Total Environ. 2020. PMID: 32019009 Review.
-
Characteristics of Major Air Pollutants in China.Adv Exp Med Biol. 2017;1017:7-26. doi: 10.1007/978-981-10-5657-4_2. Adv Exp Med Biol. 2017. PMID: 29177957 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous