Applications of delayed fluorescence from photosystem II
- PMID: 24351639
- PMCID: PMC3892870
- DOI: 10.3390/s131217332
Applications of delayed fluorescence from photosystem II
Abstract
While photosystem II (PSII) of plants utilizes light for photosynthesis, part of the absorbed energy may be reverted back and dissipated as long-term fluorescence (delayed fluorescence or DF). Because the generation of DF is coupled with the processes of forward photosynthetic activities, DF contains the information about plant physiological states and plant-environment interactions. This makes DF a potentially powerful biosensing mechanism to measure plant photosynthetic activities and environmental conditions. While DF has attracted the interest of many researchers, some aspects of it are still unknown because of the complexity of photosynthetic system. In order to provide a holistic picture about the usefulness of DF, it is meaningful to summarize the research on DF applications. In this short review, available literature on applications of DF from PSII is summarized.
Figures
Similar articles
-
On the potential usefulness of Fourier spectra of delayed fluorescence from plants.Sensors (Basel). 2014 Dec 9;14(12):23620-9. doi: 10.3390/s141223620. Sensors (Basel). 2014. PMID: 25502123 Free PMC article.
-
Recent advances in the application of chlorophyll a fluorescence from photosystem II.Photochem Photobiol. 2015 Jan-Feb;91(1):1-14. doi: 10.1111/php.12362. Epub 2014 Dec 16. Photochem Photobiol. 2015. PMID: 25314903 Review.
-
Rapid and non-invasive detection of plants senescence using a delayed fluorescence technique.Photochem Photobiol Sci. 2007 Jun;6(6):635-41. doi: 10.1039/b617893f. Epub 2007 Mar 6. Photochem Photobiol Sci. 2007. PMID: 17549265
-
Impact of energy limitations on function and resilience in long-wavelength Photosystem II.Elife. 2022 Jul 19;11:e79890. doi: 10.7554/eLife.79890. Elife. 2022. PMID: 35852834 Free PMC article.
-
Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker.Photosynth Res. 2012 Dec;114(2):69-96. doi: 10.1007/s11120-012-9780-3. Epub 2012 Oct 13. Photosynth Res. 2012. PMID: 23065335 Review.
Cited by
-
Towards improved biomonitoring tools for an intensified sustainable multi-use environment.Microb Biotechnol. 2016 Sep;9(5):658-65. doi: 10.1111/1751-7915.12395. Epub 2016 Jul 29. Microb Biotechnol. 2016. PMID: 27468753 Free PMC article. Review.
-
Fluorescent sensors for biological applications.Sensors (Basel). 2014 Sep 25;14(9):17829-31. doi: 10.3390/s140917829. Sensors (Basel). 2014. PMID: 25256112 Free PMC article.
-
On the potential usefulness of Fourier spectra of delayed fluorescence from plants.Sensors (Basel). 2014 Dec 9;14(12):23620-9. doi: 10.3390/s141223620. Sensors (Basel). 2014. PMID: 25502123 Free PMC article.
-
BIG Regulates Dynamic Adjustment of Circadian Period in Arabidopsis thaliana.Plant Physiol. 2018 Sep;178(1):358-371. doi: 10.1104/pp.18.00571. Epub 2018 Jul 11. Plant Physiol. 2018. PMID: 29997180 Free PMC article.
-
A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing.Biosensors (Basel). 2022 Oct 2;12(10):817. doi: 10.3390/bios12100817. Biosensors (Basel). 2022. PMID: 36290954 Free PMC article.
References
-
- Taiz L., Zeiger E. Plant Physiology. Sinauer Associates Inc.; Sunderland, UK: 2002.
-
- Voet D., Voet J. Biochemistry. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2004.
-
- Renger G. Model for molecular mechanism of photosynthetic oxygen evolution. FEBS Lett. 1977;81:223–228.
-
- James P.M., Gascon J.A., Batista V.S., Brudvig G.W. The mechanism of photosynthetic water splitting. Photochem. Photobiol. Sci. 2005;4:940–949. - PubMed
-
- Ducruet J.M. Chlorophyll thermoluminescence of leaf discs: Simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. J. Exp. Bot. 2003;54:2419–2430. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous