Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges
- PMID: 24351646
- PMCID: PMC3892855
- DOI: 10.3390/s131217472
Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges
Abstract
The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems.
Figures
References
-
- Sow D., Turaga D., Schmidt M. Mining of Sensor Data in Healthcare: A Survey. In: Aggarwal C.C., editor. Managing and Mining Sensor Data. Springer; Berlin, Germany: 2013. pp. 459–504.
-
- Youm S., Lee G., Park S., Zhu W. Development of remote healthcare system for measuring and promoting healthy lifestyle. Expert Syst. Appl. 2011;38:2828–2834.
-
- Malhi K., Mukhopadhyay S.C., Schnepper J., Haefke M., Ewald H. A Zigbee-based wearable physiological parameters monitoring system. IEEE Sens. J. 2012;12:423–430.
-
- Yamada I., Lopez G. Wearable Sensing Systems for Healthcare Monitoring. Proceedings of the Symposium on VLSI Technology; Honolulu, HI, USA. 12–14 June 2012; pp. 5–10.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
