Reclassification of predictions for uncovering subgroup specific improvement
- PMID: 24353130
- PMCID: PMC4008681
- DOI: 10.1002/sim.6077
Reclassification of predictions for uncovering subgroup specific improvement
Abstract
Risk prediction models play an important role in prevention and treatment of several diseases. Models that are in clinical use are often refined and improved. In many instances, the most efficient way to improve a successful model is to identify subgroups for which there is a specific biological rationale for improvement and tailor the improved model to individuals in these subgroups, an approach especially in line with personalized medicine. At present, we lack statistical tools to evaluate improvements targeted to specific subgroups. Here, we propose simple tools to fill this gap. First, we extend a recently proposed measure, the Integrated Discrimination Improvement, using a linear model with covariates representing the subgroups. Next, we develop graphical and numerical tools that compare reclassification of two models, focusing only on those subjects for whom the two models reclassify differently. We apply these approaches to BRCAPRO, a genetic risk prediction model for breast and ovarian cancer, using data from MD Anderson Cancer Center. We also conduct a simulation study to investigate properties of the new reclassification measure and compare it with currently used measures. Our results show that the proposed tools can successfully uncover subgroup specific model improvements.
Keywords: BRCAPRO; Integrated Discrimination Improvement; breast cancer; reclassification methods; risk prediction.
Copyright © 2013 John Wiley & Sons, Ltd.
Figures
References
-
- D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117:743–753. - PubMed
-
- Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. Journal of the National Cancer Institute. 1989;81:1879–1886. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous