Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process
- PMID: 2435316
- DOI: 10.1021/bi00374a006
Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process
Abstract
Evaluation of the free energy of ionization of acidic groups in proteins may be used as a powerful and general test case for determining the reliability of calculations of electrostatic energies in macromolecules. This work attacks this test case by using an adiabatic charging process that evaluates the changes in free energies associated with ionizing the acidic groups Asp-3 and Glu-7 in bovine pancreatic trypsin inhibitor and aspartic acid in solution. The results of these free energy calculations are very encouraging; the error range is about 1 kcal/mol for these free energy changes of about-70 kcal/mol. This indicates that we are finally approaching the stage of obtaining quantitative results in modeling the energetics of solvated proteins.
Similar articles
-
Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor.J Mol Biol. 1985 Sep 20;185(2):389-404. doi: 10.1016/0022-2836(85)90411-5. J Mol Biol. 1985. PMID: 2414450
-
Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases.Biochemistry. 1999 Jun 1;38(22):7142-50. doi: 10.1021/bi990265u. Biochemistry. 1999. PMID: 10353824
-
Computational analysis of binding of P1 variants to trypsin.Protein Sci. 2001 Aug;10(8):1584-95. doi: 10.1110/ps.940101. Protein Sci. 2001. PMID: 11468355 Free PMC article.
-
Free energy calculations and ligand binding.Adv Protein Chem. 2003;66:123-58. doi: 10.1016/s0065-3233(03)66004-3. Adv Protein Chem. 2003. PMID: 14631818 Review. No abstract available.
-
The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.Proteins. 2006 Sep 1;64(4):829-44. doi: 10.1002/prot.21012. Proteins. 2006. PMID: 16779836 Review.
Cited by
-
The role of the Met20 loop in the hydride transfer in Escherichia coli dihydrofolate reductase.J Biol Chem. 2017 Aug 25;292(34):14229-14239. doi: 10.1074/jbc.M117.777136. Epub 2017 Jun 15. J Biol Chem. 2017. PMID: 28620051 Free PMC article.
-
Correlating protein hot spot surface analysis using ProBiS with simulated free energies of protein-protein interfacial residues.J Chem Inf Model. 2012 Oct 22;52(10):2541-9. doi: 10.1021/ci3003254. Epub 2012 Oct 8. J Chem Inf Model. 2012. PMID: 23009716 Free PMC article.
-
Modeling and simulation of ion channels.Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4. Chem Rev. 2012. PMID: 23035940 Free PMC article. Review. No abstract available.
-
A study of the influence of the hydrophobic core residues of yeast iso-2-cytochrome c on phosphate binding: a probe of the hydrophobic core-surface charge interactions.J Protein Chem. 2001 Apr;20(3):203-15. doi: 10.1023/a:1010906929793. J Protein Chem. 2001. PMID: 11565900
-
Accurately Predicting Protein pKa Values Using Nonequilibrium Alchemy.J Chem Theory Comput. 2023 Nov 14;19(21):7833-7845. doi: 10.1021/acs.jctc.3c00721. Epub 2023 Oct 11. J Chem Theory Comput. 2023. PMID: 37820376 Free PMC article.