Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May;1840(5):1468-81.
doi: 10.1016/j.bbagen.2013.12.001. Epub 2013 Dec 16.

Diversity and evolution of membrane intrinsic proteins

Affiliations
Review

Diversity and evolution of membrane intrinsic proteins

Federico Abascal et al. Biochim Biophys Acta. 2014 May.

Abstract

Background: Membrane intrinsic proteins (MIPs) are the proteins in charge of regulating water transport into cells. Because of this essential function, the MIP family is ancient, widespread, and highly diverse.

Scope of review: The rapidly accumulating genomic and transcriptomic data from previously poorly known groups such as unicellular eukaryotes, fungi, green algae, mosses, and non-vertebrate animals are contributing to expand our view of MIP evolution throughout the diversity of life. Here, by analyzing more than 1700 sequences, we provide an updated and comprehensive phylogeny of MIPs

Major conclusions: The reconstructed phylogeny supports (i) deep orthology of X intrinsic proteins (XIPs; present from unicellular eukaryotes to plants); (ii) that the origin of small intrinsic proteins (SIPs) traces back to the common ancestor of all plants; and (iii) the expansion of aquaglyceroporins (GLPs) in Oomycetes, as well as their loss in vascular plants and in the ancestor of endopterygote insects. Additionally, conserved positions in the protein, and residues involved in glycerol selectivity are reviewed within a phylogenetic framework. Furthermore, functional diversification of human and Arabidopsis paralogs are analyzed in an evolutionary genomic context.

General significance: Our results show that while bacteria and archaea generally function with one copy of each a water channel (aquaporin or AQP) and a GLP, recurrent independent expansions have greatly diversified the structures and functions of the different members of both MIP paralog subfamilies throughout eukaryote evolution (and not only in flowering plants and vertebrates, as previously thought). This article is part of a Special Issue entitled Aquaporins.

Keywords: Aquaporin; Evolutionary relationship; Membrane intrinsic protein; Molecular phylogeny.

PubMed Disclaimer

Publication types

LinkOut - more resources