Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 15;88(4):495-8.
doi: 10.1016/j.bcp.2013.11.021. Epub 2013 Dec 16.

TREM2 and the neuroimmunology of Alzheimer's disease

Affiliations
Review

TREM2 and the neuroimmunology of Alzheimer's disease

Suzanne E Hickman et al. Biochem Pharmacol. .

Abstract

Late-onset Alzheimer's disease (AD) is a sporadic disorder with increasing prevalence in aging. The ɛ4 allele of Apolipoprotein E(ApoEɛ4) was the only known major risk factor for late onset AD. Recently, two groups of investigators independently identified variants of the TREM2 gene, encoding triggering receptor expressed on myeloid cells 2 as causing increased susceptibility to late onset AD with an odds ratio similar to that of ApoEɛ4. TREM2 is a receptor expressed on innate immune cells. Using a novel technology called Direct RNA Sequencing wedetermined the quantitative transcriptome of microglia, the principal innate neuroimmune cells and confirmed that TREM2 is a major microglia-specific gene in the central nervous system. Over the past several years we have shown that microglia play a dichotomous role in AD. Microglia can be protective and promote phagocytosis, degradation and ultimately clearance of Aβ, the pathogenic protein deposited in the brains of Alzheimer's patients. However, with disease progression, microglia become dysfunctional, release neurotoxins, lose their ability to clear Aβ and produce pro-inflammatory cytokines that promote Aβ production and accumulation. TREM2 has been shown to regulate the phagocytic ability of myeloid cells and their inflammatory response. Here we propose that the mechanism(s) by which TREM2 variants cause Alzheimer's disease are via down regulation of the Aβ phagocytic ability of microglia and by dysregulation of the pro-inflammatory response of these cells. Based on our discussion we propose that TREM2 is a potential therapeutic target for stopping ordelaying progression of AD.

Keywords: Alzheimer's disease; Microglia; NeuroImmunology; TREM2.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Expression levels of the top 75 microglial receptors show that TREM2 is highly expressed in microglia (a) and highly enriched in microglia compared to whole brain (b), and to purified astrocytes (c). These data represent a reanalysis of a recently published dataset by the authors [15].

Similar articles

Cited by

References

    1. Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6:487–98. - PubMed
    1. Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11:111–28. - PMC - PubMed
    1. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33:1340–4. - PMC - PubMed
    1. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99–102. - PubMed
    1. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21. - PubMed

Publication types

MeSH terms