Purification of a RNA debranching activity from HeLa cells
- PMID: 2435736
Purification of a RNA debranching activity from HeLa cells
Abstract
The splicing of messenger RNA precursors (pre-mRNA) of eukaryotic cells involves the formation of a branched RNA intermediate known as a RNA lariat. This structure is formed in the first step of the reaction when a cleavage at the 5' splice site generates the 5' exon and a RNA species containing the intron and 3' exon in which the phosphate moiety at the 5' end of the intron is forming a 2'-5' phosphodiester bond with the 2'-hydroxyl moiety of a specific adenine residue near the 3' end of the intron forming a RNA branch with the following structure: -pA2'-pX-3'-pZ-. We have purified a debranching activity approximately 700-fold from the cytosolic fraction of HeLa cells. This activity catalyzes the hydrolysis of the 2'-5' phosphodiester bond of branched RNA structures yielding a 5'-phosphate end and a 2'-hydroxyl group at the branch attachment site. The activity possessed a sedimentation coefficient of 3.5 S. The reaction catalyzed by the purified fraction requires a divalent cation and is optimal at pH 7.0. The purified activity can efficiently hydrolyze triester trinucleotide structures (pY2'-pX-3'-pZ-) prepared by digestion of RNA lariats with nuclease P1. In contrast, a 2' phosphate monoester product (-pG2'-p 3'-pC-), formed by the wheat germ RNA ligase, was not attacked.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
