Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 16;8(12):e84649.
doi: 10.1371/journal.pone.0084649. eCollection 2013.

Rho associated coiled-coil kinase-1 regulates collagen-induced phosphatidylserine exposure in platelets

Affiliations

Rho associated coiled-coil kinase-1 regulates collagen-induced phosphatidylserine exposure in platelets

Swapan K Dasgupta et al. PLoS One. .

Abstract

Background: The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform.

Methods and results: ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01).

Conclusions: These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exists.

Figures

Figure 1
Figure 1. Collagen-induced platelet aggregation and ATP secretion are normal in ROCK1-deficient mice.
Platelets were isolated from ROCK1-deficient mice and littermate wild-type controls and stimulated with the indicated concentrations of collagen. Aggregation and ATP secretion were measured in a lumi-aggregometer. The traces shown are representative of at least 3 independent experiments.
Figure 2
Figure 2. ROCK1 deficiency does not affect platelet shape change.
Isolated murine (A, B) or human (C) platelets were stimulated with collagen (10 µg/ml,) and aggregation and ATP release (where indicated) were measured in a lumi aggregometer. (A) Wild-type and ROCK1-deficient platelets responded similarly to collagen. (B) Addition of non-specific ROCK inhibitor Y-27632 to ROCK1-deficient platelets abolished platelet shape change, similar to its effect on human platelets, though it did not alter ATP secretion. (C) The traces shown are representative of at least 3 independent experiments.
Figure 3
Figure 3. ROCK inhibition and ROCK1-deficiency increases collagen-induced phosphatidylserine expression and thrombin generation.
Isolated human (A and B) or murine (C) platelets were stimulated with collagen (10 µg/mL), and FITC-lactadherin and PE-labeled anti-CD42b were added. The exposure of phosphatidylserine was analyzed by flow cytometry. Platelets were incubated with Y-27632 or latrunculin A for 20 minutes before collagen. (D) ROCK1-deficient and wild-type murine platelets were activated with collagen in the presence of prothrombin, factor Xa, calcium, and factor V; thrombin generation was measured by the amiodolyis of thrombin substarte S-2238. (n= 3/group). * denotes a p value of < 0.05.
Figure 4
Figure 4. Collagen-induced calcium signaling I s independent of ROCK-1.
Fura-2 AM loaded platelets were incubated with buffer, Y-27632 and BAPTA-AM as described in materials and method and activated with collagen. The increase in calcium levels was quantified by measuring Fura-2 fluorescence. (A) Representative traces of Ca2+ signaling induced by collagen in isolated murine platelets. (B) Group data of intracellular Ca2+ levels in resting and activated platelets (n= 3/group) in presence of buffer, Y-27632 and BAPTA-AM. .
Figure 5
Figure 5. ROCK1-deficiency results in lower F-actin content.
Isolated platelets from ROCK1-/- and wild-type mice were stimulated with collagen (10 µg/ml) for 2 minutes; then were fixed, permeabilized, and stained with Alexa Fluor 488-phalloidin, and the F-actin content was quantified by flow cytometry (n= 3/group).
Figure 6
Figure 6. ROCK1-deficieny results in reduced phosphorylation levels.
Isolated platelets from ROCK1−/− and wild-type mice were stimulated with collagen (10 µg/ml). Platelets were solubilized at the indicated time intervals, subjected to SDS-PAGE and immunoblotted with antibodies against phospho-Lim Kinase-1 (LMK), phospho-cofilin-1, phospho-myosin phosphatase target subunit-1 (MYPT1); phospho-myosin light chain (threonine 18, P-18 MLC), and phospho-myosin light chain (serine 19; P-19 MLC). Immunoblot of β-actin was used as a loading control. One representative blot and group data (n= 3/group) are shown. * denotes a P value of less than 0.05 compared to wild-type.
Figure 7
Figure 7. Effect of ROCK1-deficiency on hemostasis in vivo.
(A) Tail-bleeding time. (B and C) Endothelial injury was induced by light/dye in the cremasteric venules and thrombus onset (B) and occlusion time (flow cessation; C) were monitored by intravital microscopy in ROCK1-/- (n= 7) and wild-type mice (n= 8). The P value in (C) was determined by one-way ANOVA.

Similar articles

Cited by

References

    1. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A et al. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895-898. doi:10.1126/science.285.5429.895. PubMed: 10436159. - DOI - PubMed
    1. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420: 629-635. doi:10.1038/nature01148. PubMed: 12478284. - DOI - PubMed
    1. Getz TM, Dangelmaier CA, Jin J, Daniel JL, Kunapuli SP. (2010) Differential phosphorylation of myosin light chain (Thr)18 and (Ser)19 and functional implications in platelets. J Thromb Haemost 8: 2283-2293. PubMed: 20670370. - PMC - PubMed
    1. Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K et al. (1996) ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392: 189-193. doi:10.1016/0014-5793(96)00811-3. PubMed: 8772201. - DOI - PubMed
    1. Lock FE, Hotchin NA (2009) Distinct roles for ROCK1 and ROCK2 in the regulation of keratinocyte differentiation. PLOS ONE 4: e8190. doi:10.1371/journal.pone.0008190. PubMed: 19997641. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources