Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May;48(5):1624-31.
doi: 10.1111/j.1471-4159.1987.tb05711.x.

Neurochemical characteristics of a novel dorsal root ganglion X neuroblastoma hybrid cell line, F-11

Neurochemical characteristics of a novel dorsal root ganglion X neuroblastoma hybrid cell line, F-11

P C Francel et al. J Neurochem. 1987 May.

Abstract

We investigated the properties of the novel dorsal root ganglion (DRG) hybrid cell line F-11 to see how closely these cells resembled normal DRG cells. Under normal growth conditions, F-11 cells appeared to contain several short neurite-like processes. However, these cells could also be grown under conditions in which they showed a much more extensive neuronal morphology, exhibiting many long neurites. Several differentiated features of DRG cells were present on F-11 cells. These included the presence of delta-opioid receptors, receptors for prostaglandins and bradykinin, and dihydropyridine-sensitive calcium channels. F-11 cells also synthesized and released a substance P-like compound, as determined by immunoreactivity. Both the number of bradykinin receptors and the voltage-sensitive calcium influx increased on cell differentiation. Opioid agonists (delta-specificity) were found to decrease cyclic AMP levels in F-11 cells in a naloxone- and pertussis toxin-reversible fashion. Bradykinin stimulated the synthesis of inositol-1,4-bisphosphate and inositol-1,4,5-trisphosphate. Ca2+ channel agonists stimulated voltage-sensitive Ca2+ influx in a dose-dependent, stereospecific manner, whereas Ca2+ channel antagonists inhibited Ca2+ influx. F-11 cells should, therefore, prove useful as models for authentic DRG neurons.

PubMed Disclaimer

Publication types

LinkOut - more resources