Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr;111(4):318-26.
doi: 10.1016/j.prosdent.2013.07.017. Epub 2013 Dec 18.

Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials

Affiliations

Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials

Russell Wang et al. J Prosthet Dent. 2014 Apr.

Abstract

Statement of problem: Most fractures of dentures occur during function, primarily because of the flexural fatigue of denture resins.

Purpose: The purpose of this study was to evaluate a polymethyl methacrylate denture base material modified with multiwalled carbon nanotubes in terms of fatigue resistance, flexural strength, and resilience.

Material and methods: Denture resin specimens were fabricated: control, 0.5 wt%, 1 wt%, and 2 wt% of multiwalled carbon nanotubes. Multiwalled carbon nanotubes were dispersed by sonication. Thermogravimetric analysis was used to determine quantitative dispersions of multiwalled carbon nanotubes in polymethyl methacrylate. Raman spectroscopic analyses were used to evaluate interfacial reactions between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Groups with and without multiwalled carbon nanotubes were subjected to a 3-point-bending test for flexural strength. Resilience was derived from a stress and/or strain curve. Fatigue resistance was conducted by a 4-point bending test. Fractured surfaces were analyzed by scanning electron microscopy. One-way ANOVA and the Duncan tests were used to identify any statistical differences (α=.05).

Results: Thermogravimetric analysis verified the accurate amounts of multiwalled carbon nanotubes dispersed in the polymethyl methacrylate resin. Raman spectroscopy showed an interfacial reaction between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Statistical analyses revealed significant differences in static and dynamic loadings among the groups. The worst mechanical properties were in the 2 wt% multiwalled carbon nanotubes (P<.05), and 0.5 wt% and 1 wt% multiwalled carbon nanotubes significantly improved flexural strength and resilience. All multiwalled carbon nanotubes-polymethyl methacrylate groups showed poor fatigue resistance. The scanning electron microscopy results indicated more agglomerations in the 2% multiwalled carbon nanotubes.

Conclusions: Multiwalled carbon nanotubes-polymethyl methacrylate groups (0.5% and 1%) performed better than the control group during the static flexural test. The results indicated that 2 wt% multiwalled carbon nanotubes were not beneficial because of the inadequate dispersion of multiwalled carbon nanotubes in the polymethyl methacrylate matrix. Scanning electron microscopy analysis showed agglomerations on the fracture surface of 2 wt% multiwalled carbon nanotubes. The interfacial bonding between multiwalled carbon nanotubes and polymethyl methacrylate was weak based on the Raman data and dynamic loading results.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources