Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1987:41:125-48.

Voltage-sensitive sodium channels: an evolving molecular view

  • PMID: 2436306
Review

Voltage-sensitive sodium channels: an evolving molecular view

R L Barchi et al. Soc Gen Physiol Ser. 1987.

Abstract

Sodium channel proteins have now been isolated from a number of nerve and muscle preparations. All are characterized by the presence of a very large glycoprotein subunit of approximately 260 kilodaltons which may contain the structural features required for voltage-dependent channel gating and cation selectivity. These purified proteins have been reconstituted into vesicle systems and planar bilayers and demonstrate the ensemble and single-channel behavior characteristic of the native sodium channel. Although the sodium channel from eel appears to consist of only the 260-kilodalton protein, the channels from rat brain and rat or rabbit skeletal muscle contain one or more smaller subunits of 37-39 kilodaltons. In skeletal muscle, a 38-kilodalton subunit is present in both conventionally purified channel and channel isolated with immunoaffinity techniques. The stoichiometry of the large (alpha) and the small (beta) subunits appears to be 1:1 in skeletal muscle but 1:2 in rat brain. The role of the small subunits in the normal functioning of the sodium channel remains to be defined.

PubMed Disclaimer

Similar articles

Cited by

Publication types