Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Nov 26:9:2641-59.
doi: 10.3762/bjoc.9.300.

Garner's aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

Affiliations
Review

Garner's aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

Mikko Passiniemi et al. Beilstein J Org Chem. .

Abstract

Since its introduction to the synthetic community in 1984, Garner's aldehyde has gained substantial attention as a chiral intermediate for the synthesis of numerous amino alcohol derivatives. This review presents some of the most successful carbon chain elongation reactions, namely carbonyl alkylations and olefinations. The literature is reviewed with particular attention on understanding how to avoid the deleterious epimerization of the existing stereocenter in Garner's aldehyde.

Keywords: Garner’s aldehyde; L-serine; asymmetric synthesis; natural product synthesis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structures of limonene, carvone and thalidomide.
Figure 2
Figure 2
Structure of Garner’s aldehyde.
Scheme 1
Scheme 1
(a) i) Boc2O, 1.0 N NaOH (pH >10), dioxane, +5 °C → rt; ii) MeI, K2CO3, DMF, 0 °C → rt (86% over two steps); (b) Me2C(OMe)2, cat. p-TsOH, benzene, reflux (70–89%); (c) 1.5 M DIBAL-H, toluene, −78 °C (76%).
Scheme 2
Scheme 2
(a) AcCl, MeOH, 0 °C → reflux (99%); (b) i) (Boc)2O, Et3N, THF, 0 °C → rt → 50 °C (89%); ii) Me2C(OMe)2, BF3·Et2O, acetone, rt (91%).
Scheme 3
Scheme 3
(a) LiAlH4, THF, rt (93–96%); (b) (COCl)2, DMSO, iPr2NEt, CH2Cl2, −78 °C → −55 °C (99%).
Scheme 4
Scheme 4
The Koskinen procedure for the preparation of Garner’s aldehyde. (a) i) AcCl, MeOH, 0 °C → 50 °C (99%); ii) (Boc)2O, Et3N, CH2Cl2, 0 °C → rt (95–99%); (b) Me2C(OMe)2, BF3·Et2O, CH2Cl2, rt (86%, after high vacuum distillation); (c) DIBAL-H, toluene, −84 °C (EtOAc/N2 bath) (82–84%, after high vacuum distillation).
Scheme 5
Scheme 5
Burke’s synthesis of Garner’s aldehyde. BDP - bis(diazaphospholane).
Figure 3
Figure 3
Structures of some iminosugars (7, 9), peptide antibiotics (8) and sphingosine (10) and pachastrissamine (11).
Scheme 6
Scheme 6
Use of Garner’s aldehyde 1 in multistep synthesis.
Scheme 7
Scheme 7
Explanation of the anti- and syn-selectivity in the nucleophilic addition reaction.
Scheme 8
Scheme 8
Herold’s method: (a) Lithium 1-pentadecyne, HMPT, THF, −78 °C (71%); (b) Lithium 1-pentadecyne, ZnBr2, Et2O, −78 °C → rt (87%). Garner’s method: (c) Lithium 1-pentadecyne, THF, −23 °C (83%); (d) 1-Pentadecyne, DIBAL-H, hexanes/toluene, −78 °C (>80%).
Scheme 9
Scheme 9
(a) Ethyl lithiumpropiolate, HMPT, THF, −78 °C; (b) (S)- or (R)-MTPA, DCC, DMAP, THF, rt (18, 81%) or (19, 87%).
Scheme 10
Scheme 10
Coleman’s selectivity studies and their transition state model for the co-ordinated delivery of the vinyl nucleophile.
Scheme 11
Scheme 11
(a) PhMgBr, THF, −78 °C → 0 °C [62] or (a) PhMgBr, Et2O, 0 °C [63].
Scheme 12
Scheme 12
(a) cat. RhCl3·3H2O, cat. 26, NaOMe, Ph-B(OH)2, aq DME, 80 °C (24, 71%); (b) cat. RhCl3·3H2O, cat. 26, NaOMe, C6H13CH=CH2-B(OH)2, aq DME, 55 °C (25, 78%).
Scheme 13
Scheme 13
Lithiated dithiane (3 equiv), CuI (0.3 equiv), BF3·Et2O (6 equiv), THF, −50 °C, 12 h (70%).
Scheme 14
Scheme 14
Addition reaction reported by Lam et al. (a) 1-Hexyne, n-BuLi, THF, −15 °C or −40 °C.
Scheme 15
Scheme 15
(a) n-BuLi, HMPT, toluene, −78 °C → rt (85%); (b) n-BuLi, ZnCl2, toluene/Et2O, −78 °C → rt (65%).
Scheme 16
Scheme 16
(a) n-BuLi, 34, THF, −40 °C [69]; (b) n-BuLi, 35, THF, −78 °C → rt (80%) [70]; (c) n-BuLi, 35, HMPT, THF, −78 °C (87%) [71].
Scheme 17
Scheme 17
(a) cat. Rh(acac)(CO)2, 42, THF, 40 °C (74%).
Scheme 18
Scheme 18
(a) 1-PropynylMgBr, CuI, THF, Me2S, −78 °C (95%); (b) Ethynyltrimethylsilane, EtMgBr, CuI, THF, Me2S, −78 °C (82%) [72]; (c) EthynylMgCl, ZnBr2, toluene, −78 °C [73]; (d) n-BuLi, methyl propiolate, Et2O, −78 °C → 0 °C, then (S)-1 at −20 °C (62%) [74].
Scheme 19
Scheme 19
(a) cat. 50, toluene, 0 °C (52%); (b) cat. 51, toluene, 0 °C (51%); (c) cat. 52, toluene, 0 °C (50%).
Scheme 20
Scheme 20
(a) (iPr)3SiH, cat. Ni(COD)2, dimesityleneimidazolium·HCl, t-BuOK, THF, rt.
Scheme 21
Scheme 21
(a) Cp2Zr(H)Cl, cat. AgAsF6, CH2Cl2, rt; (b) Cp2Zr(H)Cl, 1-pentadecyne, cat. ZnBr2 in THF for anti-selective or ZnEt2 in CH2Cl2 for syn-selective reaction. (c) Cp2Zr(H)Cl, Et2Zn, in CH2Cl2, for syn-selective reaction or in THF for anti-selective reaction.
Scheme 22
Scheme 22
(a) i) 31, n-BuLi, THF, −78 °C; ii) (S)-1, THF, −78 °C; (b) Red-Al, THF, 0 °C.
Scheme 23
Scheme 23
(a) 61, n-BuLi, DMPU, toluene, −78 °C, then (S)-1, toluene, −95 °C (57%); (b) 61, n-BuLi, ZnCl2, toluene, −78 °C, then (S)-1, toluene, −95 °C (72%).
Scheme 24
Scheme 24
Olefin A as an intermediate in natural product synthesis.
Scheme 25
Scheme 25
(a) Ph3(Me)PBr, KH, benzene (66%, rac-64) or (b) AlMe3, Zn, CH2I2, THF (76%) [101]; (c) Ph3(Me)PBr, n-BuLi, THF, −75 °C, then (S)-1 (27%, 69% ee) [102]; (d) 65, n-BuLi, THF, −75 °C, then (S)-1 (78%, 1:13 E/Z, >95% ee); (e) 67, KHMDS, THF, −78 °C, then (S)-1, quenching with MeOH (70%, >10:1 E/Z) [104].
Scheme 26
Scheme 26
(a) Benzene, rt (82%) [108]; (b) K2CO3, MeOH (85%) [89]; (c) iPrOH, [Ir(COD)Cl]2, PPh3, THF, rt (81%) [114].
Scheme 27
Scheme 27
Mechanism of the Still–Gennari modification of the HWE reaction leading to both olefin isomers.

References

    1. Vallery-Radot R, Devonshire R L. Life of Pasteur (transl.) New York: Dover Publications; 1960. p. 484.
    1. Ramos Tombo G M, Belluš D. Angew Chem, Int Ed Engl. 1991;30:1193–1215. doi: 10.1002/anie.199111933. - DOI
    1. Lamberth C. Tetrahedron. 2010;66:7239–7256. doi: 10.1016/j.tet.2010.06.008. - DOI
    1. Vaenkatesan V, Wegh R T, Teunissen J-P, Lub J, Bastiaansen C W M, Broer D J. Adv Funct Mater. 2005;15:138–142. doi: 10.1002/adfm.200400122. - DOI
    1. Zhuang X X, Sun X X, Li L, Li Y C. Adv Mat Res. 2011;337:151–154. doi: 10.4028/www.scientific.net/AMR.337.151. - DOI

LinkOut - more resources