Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 19;8(12):e84386.
doi: 10.1371/journal.pone.0084386. eCollection 2013.

Genetic analysis of benzothiophene biodesulfurization pathway of Gordonia terrae strain C-6

Affiliations

Genetic analysis of benzothiophene biodesulfurization pathway of Gordonia terrae strain C-6

Wei Wang et al. PLoS One. .

Abstract

Sulfur can be removed from benzothiophene (BT) by some bacteria without breaking carbon-carbon bonds. However, a clear mechanism for BT desulfurization and its genetic components have not been reported in literatures so far. In this study, we used comparative transcriptomics to study differential expression of genes in Gordonia terrae C-6 cultured with BT or sodium sulfate as the sole source of sulfur. We found that 135 genes were up-regulated with BT relative to sodium sulfate as the sole sulfur source. Many of these genes encode flavin-dependent monooxygenases, alkane sulfonate monooxygenases and desulfinase, which perform similar functions to those involved in the 4S pathway of dibenzothiophene (DBT) biodesulfurization. Three of the genes were found to be located in the same operon, designated bdsABC. Cell extracts of pET28a-bdsABC transfected E. coli Rosetta (DE3) converted BT to a phenolic compound, identified as o-hydroxystyrene. These results advance our understanding of enzymes involved in the BT biodesulfurization pathway.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. The proposed BT biodesulfurization pathway for Sinorhizobium sp. KT55 (a) and Gordonia sp. 213E (b).
(A) benzothiophene; (B) benzothiophene S-oxide; (C) benzothiophene S,S-dioxide; (D) benzo[c][l,2]oxathiin S-oxide; (E) o-hydroxystyrene; (F) 2-(2’-hydroxypheny1)ethan-1-al; (G) benzo[c][1,2]oxathiin S,S-dioxide.
Figure 2
Figure 2. Biodesulfurization of BT during growth of G. terrae strain C-6.
Strain C-6 was cultured in BSMS- medium with 0.3mM BT as the sole source of sulfur. Black triangles, BT in the culture inoculating with strain C-6; black diamonds, BT in the culture without inoculating with strain C-6; black circles, bacterial growth; black squares, final product of BT biodesulfurization.
Figure 3
Figure 3. Differentially expressed genes of strain C-6 cultured with different sulfur sources.
Red dots indicate differentially expressed genes. Black-colored dots were not considered as significantly differentially expressed. The Y-axis shows the fold-change values between BT and sodium sulfate as sulfur sourcebased on a log2 scale. The X-axis shows the average count of reads per million reads based on a log2 scale.
Figure 4
Figure 4. The proposed metabolism of BT for G. terrae strain C-6.

Similar articles

Cited by

References

    1. Pawelec B, Navarro RM, Campos-Martin JM, Fierro JLG (2011) Towards near zero-sulfur liquid fuels: a perspective review. Catal Sci Technol 1: 23-42. doi:10.1039/c0cy00049c. - DOI
    1. Kulkarni PS, Afonsoa CAM (2010) Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chem 12: 1139-1149. doi:10.1039/c002113j. - DOI
    1. Chi Y, Li C, Jiao Q, Liu Q, Yan P et al. (2011) Desulfurization by oxidation combined with extraction using acidic room-temperature ionic liquids. Green Chem 13: 1224-1229. doi:10.1039/c0gc00745e. - DOI
    1. Hasan Z, Jeon J, Jhung SH (2012) Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts. J Hazard Mater 205-206: 216-221. doi:10.1016/j.jhazmat.2011.12.059. PubMed: 22245512. - DOI - PubMed
    1. Xu P, Feng J, Yu B, Li F, Ma C (2009) Recent developments in biodesulfurization of fossil fuels. Adv Biochem Eng Biotechnol 113: 255-274. PubMed: 19475378. - PubMed

Publication types

Associated data

LinkOut - more resources