Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May 5;262(13):6135-41.

Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. I. Use of pyrophosphate to study caffeine-induced Ca2+ release

  • PMID: 2437114
Free article

Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. I. Use of pyrophosphate to study caffeine-induced Ca2+ release

P Palade. J Biol Chem. .
Free article

Abstract

A demonstration is made of pyrophosphate's use as a precipitating anion in studies of Ca2+ release from isolated sarcoplasmic reticulum (SR). Not only does pyrophosphate speed up the rate at which Ca2+ can be preloaded into SR, but it also allows the accumulated Ca2+ to be released in response to agents such as caffeine. Because so much Ca2+ can be preloaded into SR with pyrophosphate present, more experiments can be performed with a given amount of SR material, and even rapid Ca2+ release rates (greater than 1 mumol/mg X min) are maintained for many seconds. These rates can easily be quantified using conventional spectrophotometric and isotopic methods, without the need for expensive rapid mixing equipment. Caffeine-induced Ca2+ release is exhibited by triadic and terminal cisterna SR subfractions but not by light SR. Caffeine specifically increases the rate of unidirectional 45Ca2+ efflux. This increased efflux is blocked by ruthenium red at submicromolar concentrations and by tetracaine, 9-aminoacridine, or Ba2+ at submillimolar concentrations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources