Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May 29;236(4805):1094-8.
doi: 10.1126/science.2437657.

Single-channel and genetic analyses reveal two distinct A-type potassium channels in Drosophila

Single-channel and genetic analyses reveal two distinct A-type potassium channels in Drosophila

C K Solc et al. Science. .

Abstract

Whole-cell and single-channel voltage-clamp techniques were used to identify and characterize the channels underlying the fast transient potassium current (A current) in cultured myotubes and neurons of Drosophila. The myotube (A1) and neuronal (A2) channels are distinct, differing in conductance, voltage dependence, and gating kinetics. The myotube currents have a faster and more voltage-dependent macroscopic inactivation rate, a larger steady-state component, and a less negative steady-state inactivation curve than the neuronal currents. The myotube channels have a conductance of 12 to 16 picosiemens, whereas the neuronal channels have a conductance of 5 to 8 picosiemens. In addition, the myotube channel is affected by Shaker mutations, whereas the neuronal channel is not. Together, these data suggest that the two channels are separate molecular structures, the expression of which is controlled, at least in part, by different genes.

PubMed Disclaimer

Publication types

LinkOut - more resources