Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb 12:73:73-82.
doi: 10.1016/j.ejmech.2013.11.028. Epub 2013 Dec 12.

Specific features of HIV-1 integrase inhibition by bisphosphonate derivatives

Affiliations

Specific features of HIV-1 integrase inhibition by bisphosphonate derivatives

Julia Agapkina et al. Eur J Med Chem. .

Abstract

The integration of viral DNA into the cell genome is one of the key steps in the replication cycle of human immunodeficiency virus type 1 (HIV-1). Therefore, the viral enzyme integrase (IN) catalyzing this process is of great interest as a target for new antiviral agents. We performed a structural-functional analysis of five different series of methylenebisphosphonates (BPs), PO3H2-C(R)(X)-PO3H2, as IN inhibitors with the goal of assessing structural elements required for the inhibitory activity. We found that IN is inhibited only by BP bearing a chlorobenzyl substituent R at the bridging carbon of the P-C-P backbone. These BP inhibited both IN-catalyzed reactions with similar efficacies. They were also active toward some INs with mutations characteristic for HIV-1 strains resistant to strand transfer inhibitors. The study of the mechanism of the IN inhibition by various BP showed that it is effected by the nature of the second substituent (X) at the bridging carbon. Among the tested compounds, only the BP with the amino group bound directly to the BP bridging carbon was found to be a noncompetitive inhibitor and, hence, it can be promising for further studies as potential inhibitor of the IN activity within the preintegration complex.

Keywords: Bisphosphonates; HIV; Inhibitors; Integrase; SAR.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources