Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Dec 21;19(47):9003-11.
doi: 10.3748/wjg.v19.i47.9003.

Pancreatic trauma: a concise review

Affiliations
Review

Pancreatic trauma: a concise review

Uma Debi et al. World J Gastroenterol. .

Abstract

Traumatic injury to the pancreas is rare and difficult to diagnose. In contrast, traumatic injuries to the liver, spleen and kidney are common and are usually identified with ease by imaging modalities. Pancreatic injuries are usually subtle to identify by different diagnostic imaging modalities, and these injuries are often overlooked in cases with extensive multiorgan trauma. The most evident findings of pancreatic injury are post-traumatic pancreatitis with blood, edema, and soft tissue infiltration of the anterior pararenal space. The alterations of post-traumatic pancreatitis may not be visualized within several hours following trauma as they are time dependent. Delayed diagnoses of traumatic pancreatic injuries are associated with high morbidity and mortality. Imaging plays an important role in diagnosis of pancreatic injuries because early recognition of the disruption of the main pancreatic duct is important. We reviewed our experience with the use of various imaging modalities for diagnosis of blunt pancreatic trauma.

Keywords: Pancreas; Pancreatitis; Radiology; Trauma.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Gross anatomy of the pancreas.
Figure 2
Figure 2
Ultrasound image. Axial ultrasound image shows localized traumatic enlargement of the pancreas with diffuse edema. Transection of distal body of pancreas communicating with large fluid collection anterior to pancreas (white arrow).
Figure 3
Figure 3
Computed tomography images. A, B: Axial contrast-enhanced computed tomography shows a heterogeneous appearance of the body and tail of pancreas with a linear laceration (white arrow) across the distal body of the pancreas. There is also fluid in the lesser sac, perihepatic space, perisplenic space and hemoperitoneum. There is free air into chest wall muscles on right side in a case of blunt pancreatic trauma (A), and transection throughout extent of pancreatic parenchyma in proximal body region (suggestive of ductal injury) with a large fluid collection (white arrow) anterior to pancreas communication with the transection in another case of blunt injury to upper abdomen (B); C: Contrast-enhanced computed tomography demonstrating mild diffuse hypodensity of the body of pancreas. Contusions of the head and neck also demonstrated (white arrow) with secondary signs of traumatic pancreatitis, i.e., increased density of the peripancreatic fat, thickening of left anterior pararenal fascia, fluid in the lesser sac and hemoperitoneum; D: Plain axial computed tomography section at the level of pancreas shows a large hyperdense hematoma (black arrow) in proximal body of pancreas suggestive of pancreatic injury. E: Multiplanar reconstruction image of contrast-enhanced computed tomography demonstrating a pancreatic fracture (white arrow) in neck region with separation of pancreatic fragments; F: Contrast-enhanced axial computed tomography scan in a child with bicycle handlebar injury more than a month old shows a large lobulated pseudocyst anterior to pancreas communicating with pancreatic laceration in the neck of pancreas representing ductal injury. There is fluid between posterior pancreas and the splenic vein (arrow heads).
Figure 4
Figure 4
Magnetic resonance images. T2 weighted axial image (A) and magnetic resonance cholangiopancreatography (B) in a case of traumatic pancreatitis show heterogenous signal intensity of pancreas with peripancreatic stranding. Main pancreatic duct is dilated in the body and tail region (black arrow). A lobulated pseudopancreatic cyst is seen in lesser sac anterior aspect of body of pancreas (white arrow) demonstrated in magnetic resonance cholangiopancreatography.
Figure 5
Figure 5
Endoscopic retrograde cholangiopancreatography image. Another case of traumatic pancreatitis. Fluoroscopic image showing main pancreatic duct disruptions during endoscopic retrograde cholangiopancreatography with multiple contrast filled outpouching is seen, suggestive of pseudocysts (white arrow). Multiple contrast filled tracts are also visualized (black arrowhead). Few tracts are seen in retroperitoneum and one of the tracts is reaching into mediastinum (black arrow). Endoscope is visible.
Figure 6
Figure 6
Management algorithm for traumatic pancreatic injury patients. Reproduced from Ilahi et al[14]. ERCP: Endoscopic retrograde cholangiopancreatography; MRCP: Magnetic resonance cholangiopancreatography.

References

    1. Cirillo RL, Koniaris LG. Detecting blunt pancreatic injuries. J Gastrointest Surg. 2002;6:587–598. - PubMed
    1. Kao LS, Bulger EM, Parks DL, Byrd GF, Jurkovich GJ. Predictors of morbidity after traumatic pancreatic injury. J Trauma. 2003;55:898–905. - PubMed
    1. Schurink GW, Bode PJ, van Luijt PA, van Vugt AB. The value of physical examination in the diagnosis of patients with blunt abdominal trauma: a retrospective study. Injury. 1997;28:261–265. - PubMed
    1. Wong YC, Wang LJ, Lin BC, Chen CJ, Lim KE, Chen RJ. CT grading of blunt pancreatic injuries: prediction of ductal disruption and surgical correlation. J Comput Assist Tomogr. 1997;21:246–250. - PubMed
    1. Fischer JH, Carpenter KD, O'Keefe GE. CT diagnosis of an isolated blunt pancreatic injury. AJR Am J Roentgenol. 1996;167:1152. - PubMed